How to create 2D DFT matrix image from the given DFT formula?

6 views (last 30 days)
I want to create a matrix e(m,n) from a 2D DFT expression. Discrete cosine transform has only cosine terms. and one more factor. e(m,n)= sigma(p from 1 to L/2) sigma(q from 1 to L/2)(1/k^a)cos(2pi.m.p/L+rand(0,2*pi).cos(2pi.n.q/L+rand(0,2*pi)) How to create the points(matrix)e(m,n) for above expression for different a values( it means that a is variable too). m and n vary from 1 to L.

Answers (1)

Balavignesh
Balavignesh on 3 Jul 2024
Hi Vibha,
As per my understanding, you would like to create a matrix e(m,n) from a 2D DFT expression. I assumed 'a' to be a variable, and 'm' and 'n' vary from 1 to 'L'. A cell array 'e_matrices' is initialized to store the result matrices for different 'a' values. The matrices are displayed using 'imagesc' along with colorbars and titles indicating the corresponding 'a' values.
% Parameters
L = 10; % Define L (can be any positive integer)
a_values = [0.5, 1, 1.5]; % Example values for a (can be any array of positive values)
% Initialize the result matrices for different 'a' values
e_matrices = cell(length(a_values), 1);
% Loop over each value of 'a'
for idx = 1:length(a_values)
a = a_values(idx);
e = zeros(L, L); % Initialize the matrix e(m,n)
% Nested loops to compute e(m,n)
for m = 1:L
for n = 1:L
sum_value = 0;
for p = 1:L/2
for q = 1:L/2
k = sqrt(p^2 + q^2); % Compute k
term1 = cos(2*pi*m*p/L + rand*2*pi);
term2 = cos(2*pi*n*q/L + rand*2*pi);
sum_value = sum_value + (1/k^a) * term1 * term2;
end
end
e(m,n) = sum_value;
end
end
% Store the result matrix for the current 'a' value
e_matrices{idx} = e;
end
% Display the results
for idx = 1:length(a_values)
a = a_values(idx);
figure;
imagesc(e_matrices{idx});
colorbar;
title(['Matrix e(m,n) for a = ', num2str(a)]);
xlabel('n');
ylabel('m');
end
Feel free to modify the parameters and 'a_values' array as needed for your specific application.
Hope that helps!
Balavignesh

Categories

Find more on Programming in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!