How can i get the fourier series of any given function
    7 views (last 30 days)
  
       Show older comments
    
    Murloc50
 on 25 Nov 2021
  
    
    
    
    
    Commented: Friedel Hartmann
      
 on 27 Nov 2021
            Since there is no direct way of finding/computing the fourier seris of a function, e.g. cos(x), how would I do this?
0 Comments
Accepted Answer
  Friedel Hartmann
      
 on 26 Nov 2021
        clear
syms x f(x) k fh(x) p(x)  ph(x)  % a0 = a0 Formel /2
iTerme = 8;
sco = zeros(1,iTerme);
cco = zeros(1,iTerme);
% T = 2*pi, omega = 1
f(x) = piecewise(x <= pi/4, -1/(2*pi) * x, pi/4 < x,-1/(2*pi) * x + 1); % Function 
for k=1:iTerme
  sco(k) = 1/pi * int(sin(k * x) * (f(x)),[0,2*pi]); % coefficients
  cco(k) = 1/pi * int(cos(k * x) * (f(x)),[0,2*pi]);
end
cnum = 1:iTerme;  % Table with coefficients
Tabelle.num = cnum';
Tabelle.scof = sco';
Tabelle.ccof = cco';
T = struct2table(Tabelle)
fplot(f(x),[0,2*pi]), title('Original'), yline(0);
figure
a0G = vpa(1/2 * 2/(2*pi) * int(f(x),[0,2*pi]),3)
fh(x) = 1/(2*pi) * int(f(x),[0,2*pi]); % 'Mittelwert' 1. Term ist a0
for k = 1:iTerme
    fh(x) = fh(x) + sco(k) * sin(k * x) + cco(k) * cos(k * x);
end
fplot(fh(x),[0,2*pi]), title('Fourier series'), yline(0);
vpa(fh(0),3)
p(x) = x/(2*pi); % 2nd Function
for k=1:iTerme
  sco(k) = 1/pi * int(sin(k * x) * (p(x)),[0,2*pi]);
  cco(k) = 1/pi * int(cos(k * x) * (p(x)),[0,2*pi]);
end
cnum = 1:iTerme;
Tabelle.num = cnum';
Tabelle.scof = sco';
Tabelle.ccof = cco';
T = struct2table(Tabelle)
fplot(p(x),[0,2*pi]), title('Original'), yline(0);
figure
a0L = vpa(1/2 * 2/(2*pi) * int(p(x),[0,2*pi]),3)
ph(x) = 1/pi * int(p(x),[0,2*pi]) * 1/(2); % 'Mittelwert' 1. Term ist a0/2
for k = 1:iTerme
  ph(x) = ph(x) + sco(k) * sin(k * x) + cco(k) * cos(k * x);
end
fplot(ph(x),[0,2*pi]), title('Fourier series'), yline(0);
1 Comment
  Friedel Hartmann
      
 on 27 Nov 2021
				The series starts with a constant term, the average value, called 'Mittelwert' The routine first calculates the average value, assigns this number to ph(x) and then begins the loop for k = 1:iTerme etc. and adds the following sin and cos functions.
More Answers (0)
See Also
Categories
				Find more on Operators and Elementary Operations in Help Center and File Exchange
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!




