Fit an Autoregression Model to the Tidal Depth Data
This example shows how to fit an autoregression (AR) model for data in your ThingSpeak™ channel and calculate the regression parameters along with their uncertainties. Autoregression models are used to represent a time-dependent process in nature.
Read Data from the Ockway Bay Real-Time Tide Gauge
ThingSpeak channel 50289 contains data about tidal depth at Ockway Bay. The data is collected once every 5 minutes. Field 1 of the channel contains tidal depth data.
% Read the data using the |thingSpeakRead| function from channel 50289 on a particular day, for example, July 01, 2016.
startDate = datetime('July 1, 2016 12:01:00 AM'); endDate = datetime('July 2, 2016 12:01:00 AM'); dateRange = startDate:endDate; [data,timestamps] = thingSpeakRead(50289,'DateRange',dateRange,'Fields',1);
Fit an AR Model to the Data
Use the iddata
function to create an iddata object of the tidal depth data. Use detrend
to ensure the data has a zero mean.
sampleTime = 5; IDdata = iddata(data,[],sampleTime,'OutputName',{'Tidal Depth'},'TimeUnit','minutes') IDdata = detrend(IDdata,0);
IDdata = Time domain data set with 288 samples. Sample time: 5 minutes Outputs Unit (if specified) Tidal Depth
Fit Model to Data
Since the tidal depth varies with time, use the ar
function to fit a discrete-time autoregressive model to the data.
modelOrder = 8; sys = ar(IDdata,modelOrder)
sys = Discrete-time AR model: A(z)y(t) = e(t) A(z) = 1 - 1.154 z^-1 - 0.1668 z^-2 + 0.2144 z^-3 + 0.2974 z^-4 - 0.4227 z^-5 + 0.1509 z^-6 - 0.1612 z^-7 + 0.2491 z^-8 Sample time: 5 minutes Parameterization: Polynomial orders: na=8 Number of free coefficients: 8 Use "polydata", "getpvec", "getcov" for parameters and their uncertainties. Status: Estimated using AR ('fb/now') on time domain data "IDdata". Fit to estimation data: 98.5% FPE: 0.04741, MSE: 0.04485
Show Parameters
Use the getpvec
function to show the estimated parameters along with their uncertainties.
[Parameters,Uncertainties] = getpvec(sys)
Parameters = -1.1543 -0.1668 0.2144 0.2974 -0.4227 0.1509 -0.1612 0.2491 Uncertainties = 0.0580 0.0918 0.0932 0.0918 0.0921 0.0970 0.0962 0.0647
The output shows the estimated AR model parameters and the one standard deviation value of the estimated parameters.
Write Parameters to ThingSpeak
Use the thingSpeakWrite
function to write the array of values to ThingSpeak, with one vaue per field. Transpose the data to be 8 x 1. Change the channelID
and the writeAPIKey
to send data to your channel.
channelID=17504; writeAPIKey='23ZLGOBBU9TWHG2H'; response = thingSpeakWrite(channelID,'Values',Parameters','WriteKey',writeAPIKey)
response = struct with fields: Field1: '-1.154266029802091' Field2: '-0.1668388400729965' Field3: '0.2143807521019717' Field4: '0.2973816840220466' Field5: '-0.4226981725238166' Field6: '0.1509427726183032' Field7: '-0.1612303290788889' Field8: '0.2490548535561231' Latitude: [] Longitude: [] ChannelID: 17504 Created: 10-Jan-2019 15:10:41 LastEntryID: 20736 Altitude: []
See Also
Functions
thingSpeakRead
|iddata
(System Identification Toolbox) |detrend
(System Identification Toolbox) |ar
(System Identification Toolbox) |getpvec
(System Identification Toolbox)