ldivide, .\
Symbolic array left division
Syntax
Description
Examples
Divide Scalar by Matrix
Create a 2-by-3
matrix.
B = sym('b', [2 3])B = [ b1_1, b1_2, b1_3] [ b2_1, b2_2, b2_3]
Divide the symbolic expression sin(a) by each element of the
matrix B.
syms a B.\sin(a)
ans = [ sin(a)/b1_1, sin(a)/b1_2, sin(a)/b1_3] [ sin(a)/b2_1, sin(a)/b2_2, sin(a)/b2_3]
Divide Matrix by Matrix
Create a 3-by-3
symbolic Hilbert matrix and a 3-by-3
diagonal matrix.
H = sym(hilb(3)) d = diag(sym([1 2 3]))
H = [ 1, 1/2, 1/3] [ 1/2, 1/3, 1/4] [ 1/3, 1/4, 1/5] d = [ 1, 0, 0] [ 0, 2, 0] [ 0, 0, 3]
Divide d by H by using the elementwise left
division operator .\. This operator divides each element of the
first matrix by the corresponding element of the second matrix. The dimensions of
the matrices must be the same.
H.\d
ans = [ 1, 0, 0] [ 0, 6, 0] [ 0, 0, 15]
Divide Expression by Symbolic Function
Divide a symbolic expression by a symbolic function. The result is a symbolic function.
syms f(x) f(x) = x^2; f1 = f.\(x^2 + 5*x + 6)
f1(x) = (x^2 + 5*x + 6)/x^2