expint

Exponential integral function

Syntax

``expint(x)``
``expint(n,x)``

Description

example

````expint(x)` returns the one-argument exponential integral function defined as$\text{expint}\left(x\right)=\underset{x}{\overset{\infty }{\int }}\frac{{e}^{-t}}{t}dt.$```

example

````expint(n,x)` returns the two-argument exponential integral function defined as$\text{expint}\left(n,x\right)=\underset{1}{\overset{\infty }{\int }}\frac{{e}^{-xt}}{{t}^{n}}dt.$```

Examples

One-Argument Exponential Integral for Floating-Point and Symbolic Numbers

Compute the exponential integrals for floating-point numbers. Because these numbers are not symbolic objects, you get floating-point results.

`s = [expint(1/3), expint(1), expint(-2)]`
```s = 0.8289 + 0.0000i 0.2194 + 0.0000i -4.9542 - 3.1416i```

Compute the exponential integrals for the same numbers converted to symbolic objects. For positive values `x`, `expint(x)` returns `-ei(-x)`. For negative values `x`, it returns ```-pi*i - ei(-x)```.

`s = [expint(sym(1)/3), expint(sym(1)), expint(sym(-2))]`
```s = [ -ei(-1/3), -ei(-1), - ei(2) - pi*1i]```

Use `vpa` to approximate this result with 10-digit accuracy.

`vpa(s, 10)`
```ans = [ 0.8288877453, 0.2193839344, - 4.954234356 - 3.141592654i]```

Two-Argument Exponential Integral for Floating-Point and Symbolic Numbers

When computing two-argument exponential integrals, convert the numbers to symbolic objects.

`s = [expint(2, sym(1)/3), expint(sym(1), Inf), expint(-1, sym(-2))]`
```s = [ expint(2, 1/3), 0, -exp(2)/4]```

Use `vpa` to approximate this result with 25-digit accuracy.

`vpa(s, 25)`
```ans = [ 0.4402353954575937050522018, 0, -1.847264024732662556807607]```

Two-Argument Exponential Integral with Nonpositive First Argument

Compute two-argument exponential integrals. If `n` is a nonpositive integer, then ```expint(n, x)``` returns an explicit expression in the form `exp(-x)*p(1/x)`, where `p` is a polynomial of degree ```1 - n```.

```syms x expint(0, x) expint(-1, x) expint(-2, x)```
```ans = exp(-x)/x ans = exp(-x)*(1/x + 1/x^2) ans = exp(-x)*(1/x + 2/x^2 + 2/x^3)```

Derivatives of Exponential Integral

Compute the first, second, and third derivatives of a one-argument exponential integral.

```syms x diff(expint(x), x) diff(expint(x), x, 2) diff(expint(x), x, 3)```
```ans = -exp(-x)/x ans = exp(-x)/x + exp(-x)/x^2 ans = - exp(-x)/x - (2*exp(-x))/x^2 - (2*exp(-x))/x^3```

Compute the first derivatives of a two-argument exponential integral.

```syms n x diff(expint(n, x), x) diff(expint(n, x), n)```
```ans = -expint(n - 1, x) ans = - hypergeom([1 - n, 1 - n], [2 - n, 2 - n],... -x)/(n - 1)^2 - (x^(n - 1)*pi*(psi(n) - ... log(x) + pi*cot(pi*n)))/(sin(pi*n)*gamma(n))```

Input Arguments

collapse all

Input specified as a symbolic number, variable, expression, function, vector, or matrix.

Input specified as a symbolic number, variable, expression, function, vector, or matrix. When you compute the two-argument exponential integral function, at least one argument must be a scalar.

Tips

• Calling `expint` for numbers that are not symbolic objects invokes the MATLAB® `expint` function. This function accepts one argument only. To compute the two-argument exponential integral, use `sym` to convert the numbers to symbolic objects, and then call `expint` for those symbolic objects. You can approximate the results with floating-point numbers using `vpa`.

• The following values of the exponential integral differ from those returned by the MATLAB `expint` function: ```expint(sym(Inf)) = 0```, `expint(-sym(Inf)) = -Inf`, ```expint(sym(NaN)) = NaN```.

• For positive real `x`, `expint(x) = -ei(-x)`. For negative real `x`, ```expint(x) = -pi*i - ei(-x)```.

• If one input argument is a scalar and the other argument is a vector or a matrix, then `expint(n,x)` expands the scalar into a vector or matrix of the same size as the other argument with all elements equal to that scalar.

Algorithms

The relation between `expint` and `ei` is

`expint(1,-x) = ei(x) + (ln(x)-ln(1/x))/2 - ln(-x)`

Both functions `ei(x)` and `expint(1,x)` have a logarithmic singularity at the origin and a branch cut along the negative real axis. The `ei` function is not continuous when approached from above or below this branch cut.

The `expint` function is related to the upper incomplete gamma function `igamma` as

`expint(n,x) = (x^(n-1))*igamma(1-n,x)`

Version History

Introduced in R2013a