vander
Vandermonde matrix
Syntax
Description
A = vander(
returns
the Vandermonde Matrix such that
its columns are powers of the vector v
)v
.
Examples
Find the Vandermonde Matrix for Vector Input
Use the colon operator to create vector v
. Find the Vandermonde matrix for v
.
v = 1:.5:3
v = 1×5
1.0000 1.5000 2.0000 2.5000 3.0000
A = vander(v)
A = 5×5
1.0000 1.0000 1.0000 1.0000 1.0000
5.0625 3.3750 2.2500 1.5000 1.0000
16.0000 8.0000 4.0000 2.0000 1.0000
39.0625 15.6250 6.2500 2.5000 1.0000
81.0000 27.0000 9.0000 3.0000 1.0000
Find the alternate form of the Vandermonde matrix using fliplr
.
A = fliplr(vander(v))
A = 5×5
1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.5000 2.2500 3.3750 5.0625
1.0000 2.0000 4.0000 8.0000 16.0000
1.0000 2.5000 6.2500 15.6250 39.0625
1.0000 3.0000 9.0000 27.0000 81.0000
Input Arguments
v
— Input
numeric vector
Input, specified as a numeric vector.
Data Types: single
| double
Complex Number Support: Yes
More About
Vandermonde Matrix
For input vector , the Vandermonde matrix is
The matrix is described by the formula such
that its columns are powers of the vector v
.
An alternate form of the Vandermonde matrix flips the matrix
along the vertical axis, as shown. Use fliplr(vander(v))
to
return this form.
Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.
Thread-Based Environment
Run code in the background using MATLAB® backgroundPool
or accelerate code with Parallel Computing Toolbox™ ThreadPool
.
This function fully supports thread-based environments. For more information, see Run MATLAB Functions in Thread-Based Environment.
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.
The vander
function
fully supports GPU arrays. To run the function on a GPU, specify the input data as a gpuArray
(Parallel Computing Toolbox). For more information, see Run MATLAB Functions on a GPU (Parallel Computing Toolbox).
Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel Computing Toolbox™.
This function fully supports distributed arrays. For more information, see Run MATLAB Functions with Distributed Arrays (Parallel Computing Toolbox).
Version History
Introduced before R2006a
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: United States.
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asia Pacific
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)