Main Content

normest

2-norm estimate

Description

n = normest(S) returns an estimate of the 2-norm of the matrix S.

This function is intended primarily for sparse matrices, although it works correctly for large, full matrices as well.

example

n = normest(S,tol) estimates the 2-norm using the relative error tolerance tol instead of the default tolerance 1.0e-6.

example

[n,count] = normest(___) returns an estimate of the 2-norm and also gives the number of power iterations used in the computation. Use this syntax with any of the input arguments in previous syntaxes.

example

Examples

collapse all

Create a 5-by-5 sparse diagonal matrix.

S = sparse(1:5,1:5,1:5)
S = 5×5 sparse double matrix (5 nonzeros)
   (1,1)        1
   (2,2)        2
   (3,3)        3
   (4,4)        4
   (5,5)        5

Estimate the 2-norm of the matrix S.

n = normest(S)
n = 
5.0000

Create a 1000-by-1000 matrix of uniformly distributed random numbers.

rng default
S = rand(1000);

Evaluate the 2-norm of the matrix S by using norm. Measure the elapsed time with a pair of tic and toc calls.

tic
norm(S)
ans = 
500.4856
toc
Elapsed time is 0.230346 seconds.

To speed up the 2-norm evaluation, estimate the 2-norm of S by using normest with a specified tolerance of 1.0e-4.

tic
normest(S,1.0e-4)
ans = 
500.4856
toc
Elapsed time is 0.026118 seconds.

Create a 7-by-7 matrix.

S = gallery('clement',7,7)
S = 7×7

         0    2.4495         0         0         0         0         0
    2.4495         0    3.1623         0         0         0         0
         0    3.1623         0    3.4641         0         0         0
         0         0    3.4641         0    3.4641         0         0
         0         0         0    3.4641         0    3.1623         0
         0         0         0         0    3.1623         0    2.4495
         0         0         0         0         0    2.4495         0

Estimate the 2-norm of the matrix and return the number of power iterations used in the computation.

[n,count] = normest(S)
n = 
6.0000
count = 
4

Input Arguments

collapse all

Input matrix, specified as a sparse or full matrix.

Data Types: single | double
Complex Number Support: Yes

Relative error tolerance, specified as a nonnegative real number. The value of tol determines when the norm estimate is considered acceptable: the iteration is performed until two successive estimates agree to within the specified tol.

Data Types: single | double

Output Arguments

collapse all

Matrix norm, returned as a scalar. normest returns NaN if the input contains NaN values.

Number of power iterations used in estimating the 2-norm, returned as a nonnegative integer.

Algorithms

The power iteration involves repeated multiplication by the matrix S and its transpose, S'. The iteration is performed until two successive norm estimates agree to within the specified relative error tolerance.

Extended Capabilities

expand all

Version History

Introduced before R2006a

See Also

| | | |