isbanded
Determine if matrix is within specified bandwidth
Description
Examples
Input Arguments
Tips
Use the
bandwidth
function to find the upper and lower bandwidths of a given matrix.Use
isbanded
to test for several different matrix structures by specifying appropriate upper and lower bandwidths. This table lists some common tests.Lower Bandwidth
Upper Bandwidth
Function Call
Matrix Structure
0
0
isbanded(A,0,0)
Diagonal matrix
1
1
isbanded(A,1,1)
Tridiagonal matrix
0
size(A,2)
isbanded(A,0,size(A,2))
Upper triangular matrix
size(A,1)
0
isbanded(A,size(A,1),0)
Lower triangular matrix
1
size(A,2)
isbanded(A,1,size(A,2))
Upper Hessenberg matrix
size(A,1)
1
isbanded(A,size(A,1),1)
Lower Hessenberg matrix
Extended Capabilities
Version History
Introduced in R2014a