linapp
Linear approximation of nonlinear ARX and Hammerstein-Wiener models for given input
Syntax
lm = linapp(nlmodel,u)
lm = linapp(nlmodel,umin,umax,nsample)
Description
lm = linapp(nlmodel,u) computes a linear approximation of a
nonlinear ARX or Hammerstein-Wiener model by simulating the model output for the input
signal u, and estimating a linear model lm from
u and the simulated output signal. lm is an
idpoly model.
lm = linapp(nlmodel,umin,umax,nsample) computes a linear
approximation of a nonlinear ARX or Hammerstein-Wiener model by first generating the
input signal as a uniformly distributed white noise from the magnitude range
umin and umax and (optionally) the number of
samples.
Input Arguments
nlmodelName of the
idnlarxoridnlhwmodel object you want to linearize.uInput signal as an
iddataobject or a real matrix.Dimensions of
umust match the number of inputs innlmodel.[umin,umax]Minimum and maximum input values for generating white-noise input with a magnitude in this rectangular range. The sample length of this signal is
nsample.nsampleOptional argument when you specify
[umin,umax]. Specifies the length of the white-noise input.Default:
1024.
Version History
Introduced in R2007a