Main Content

# bdtvolspec

Specify Black-Derman-Toy interest-rate volatility process

## Syntax

``VolSpec = bdtvolspec(ValuationDate,VolDates,VolCurve)``
``VolSpec = bdtvolspec(___,InterpMethod)``

## Description

example

````VolSpec = bdtvolspec(ValuationDate,VolDates,VolCurve)` creates a structure specifying the volatility for `bdttree`. ```

example

````VolSpec = bdtvolspec(___,InterpMethod)` adds the optional argument `InterpMethod`.```

## Examples

collapse all

This example shows how to create a BDT volatility specification (VolSpec) using the following data.

```ValuationDate = '01-01-2000'; EndDates = ['01-01-2001'; '01-01-2002'; '01-01-2003'; '01-01-2004'; '01-01-2005']; Volatility = [.2; .19; .18; .17; .16]; BDTVolSpec = bdtvolspec(ValuationDate, EndDates, Volatility)```
```BDTVolSpec = struct with fields: FinObj: 'BDTVolSpec' ValuationDate: 730486 VolDates: [5x1 double] VolCurve: [5x1 double] VolInterpMethod: 'linear' ```

## Input Arguments

collapse all

Observation date of the investment horizon, specified as a scalar date using a serial date number or date character vector.

Data Types: `double` | `char`

Number of points of yield volatility end dates, specified as a `NPOINTS`-by-`1` vector of serial date numbers or date character vectors.

Data Types: `double` | `char` | `cell`

Yield volatility values, specified as a `NPOINTS`-by-`1` vector of decimal values. The term structure of `VolCurve` is the yield volatility represented by the value of the volatility of the yield from time `t` = 0 to time `t` + i, where i is any point within the volatility curve.

Data Types: `double`

(Optional) Interpolation method, specified as a character vector with values supported by `interp1`.

Data Types: `char`

## Output Arguments

collapse all

Structure specifying the volatility model for `bdttree`.

## See Also

Introduced before R2006a

Download ebook