Main Content

initcvekf

Create constant-velocity extended Kalman filter from detection report

Description

example

filter = initcvekf(detection) creates and initializes a constant-velocity extended Kalman filter from information contained in a detection report. For more information about the extended Kalman filter, see trackingEKF.

The function initializes a constant velocity state with the same convention as constvel and cvmeas, [x vx y vy z vz].

Examples

collapse all

Create and initialize a 3-D constant-velocity extended Kalman filter object from an initial detection report.

Create the detection report from an initial 3-D measurement, (10,20,−5), of the object position.

detection = objectDetection(0,[10;20;-5],'MeasurementNoise',1.5*eye(3), ...
    'SensorIndex',1,'ObjectClassID',1,'ObjectAttributes',{'Sports Car',5});

Create the new filter from the detection report.

filter = initcvekf(detection)
filter = 
  trackingEKF with properties:

                          State: [6x1 double]
                StateCovariance: [6x6 double]

             StateTransitionFcn: @constvel
     StateTransitionJacobianFcn: @constveljac
                   ProcessNoise: [3x3 double]
        HasAdditiveProcessNoise: 0

                 MeasurementFcn: @cvmeas
         MeasurementJacobianFcn: @cvmeasjac
         HasMeasurementWrapping: 1
               MeasurementNoise: [3x3 double]
    HasAdditiveMeasurementNoise: 1

                MaxNumOOSMSteps: 0

                EnableSmoothing: 0

Show the filter state.

filter.State
ans = 6×1

    10
     0
    20
     0
    -5
     0

Show the state covariance.

filter.StateCovariance
ans = 6×6

    1.5000         0         0         0         0         0
         0  100.0000         0         0         0         0
         0         0    1.5000         0         0         0
         0         0         0  100.0000         0         0
         0         0         0         0    1.5000         0
         0         0         0         0         0  100.0000

Initialize a 3-D constant-velocity extended Kalman filter from an initial detection report made from a 3-D measurement in spherical coordinates. If you want to use spherical coordinates, then you must supply a measurement parameter structure as part of the detection report with the Frame field set to 'spherical'. Set the azimuth angle of the target to 45 degrees, the elevation to -10 degrees, the range to 1000 meters, and the range rate to -4.0 m/s.

frame = 'spherical';
sensorpos = [25,-40,0].';
sensorvel = [0;5;0];
laxes = eye(3);
measparms = struct('Frame',frame,'OriginPosition',sensorpos, ...
    'OriginVelocity',sensorvel,'Orientation',laxes,'HasVelocity',true, ...
    'HasElevation',true);
meas = [45;-10;1000;-4];
measnoise = diag([3.0,2.5,2,1.0].^2);
detection = objectDetection(0,meas,'MeasurementNoise', ...
    measnoise,'MeasurementParameters',measparms)
detection = 
  objectDetection with properties:

                     Time: 0
              Measurement: [4x1 double]
         MeasurementNoise: [4x4 double]
              SensorIndex: 1
            ObjectClassID: 0
    ObjectClassParameters: []
    MeasurementParameters: [1x1 struct]
         ObjectAttributes: {}

filter = initcvekf(detection);

Filter state vector.

disp(filter.State)
  721.3642
   -2.7855
  656.3642
    2.2145
 -173.6482
    0.6946

Input Arguments

collapse all

Detection report, specified as an objectDetection object.

Example: detection = objectDetection(0,[1;4.5;3],'MeasurementNoise', [1.0 0 0; 0 2.0 0; 0 0 1.5])

Output Arguments

collapse all

Extended Kalman filter, returned as a trackingEKF object.

Algorithms

  • The function computes the process noise matrix assuming a one-second time step and an acceleration standard deviation of 1 m/s2.

  • You can use this function as the FilterInitializationFcn property of a multiObjectTracker object.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Version History

Introduced in R2017a