Documentation

### This is machine translation

Translated by
Mouseover text to see original. Click the button below to return to the English version of the page.

To view all translated materials including this page, select Country from the country navigator on the bottom of this page.

# angle2quat

Convert rotation angles to quaternion

## Syntax

```quaternion = angle2quat(rotationAng1,rotationAng2,rotationAng3) quaternion = angle2quat(rotationAng1,rotationAng2,rotationAng3,rotationSequence) ```

## Description

`quaternion = angle2quat(rotationAng1,rotationAng2,rotationAng3)` calculates the quaternion for three rotation angles.

`quaternion = angle2quat(rotationAng1,rotationAng2,rotationAng3,rotationSequence)` calculates the quaternion using a rotation sequence.

## Input Arguments

`rotationAng1`

`m`-by-1 array of first rotation angles, in radians.

`rotationAng2`

`m`-by-1 array of second rotation angles, in radians.

`rotationAng3`

`m`-by-1 array of third rotation angles, in radians.

`rotationSequence`

Rotation sequence. For example, the default `'ZYX'` represents a sequence where `rotationAng1` is z-axis rotation, `rotationAng2` is y-axis rotation, and `rotationAng3` is x-axis rotation.

 `'ZYX'` `'ZYZ'` `'ZXY'` `'ZXZ'` `'YXZ'` `'YXY'` `'YZX'` `'YZY'` `'XYZ'` `'XZY'` `'XYX'` `'XZX'` `'ZYX'` (default)

## Output Arguments

 `quaternion` `m`-by-4 matrix containing `m` quaternions. `quaternion` has its scalar number as the first column.

## Examples

Determine the quaternion from rotation angles:

```yaw = 0.7854; pitch = 0.1; roll = 0; q = angle2quat(yaw, pitch, roll) q = 0.9227 -0.0191 0.0462 0.3822```

Determine the quaternion from rotation angles and rotation sequence:

```yaw = [0.7854 0.5]; pitch = [0.1 0.3]; roll = [0 0.1]; q = angle2quat(pitch, roll, yaw, 'YXZ') q = 0.9227 0.0191 0.0462 0.3822 0.9587 0.0848 0.1324 0.2371```