Zonal Harmonic Gravity Model
Calculate zonal harmonic representation of planetary gravity
Libraries:
Aerospace Blockset /
Environment /
Gravity
Description
The Zonal Harmonic Gravity Model block calculates the zonal harmonic representation of planetary gravity at a specific location based on planetary gravitational potential. This block provides a convenient way to describe the gravitational field of a planet outside its surface.
By default, the block uses the fourth order zonal coefficient for Earth to calculate the zonal harmonic gravity. It also allows you to specify the second or third zonal coefficient.
For information on the planetary parameter values for each planet in the block implementation, see Algorithms.
Examples
Limitations
The block excludes the centrifugal effects of planetary rotation and the effects of a precessing reference frame.
Ports
Input
Output
Parameters
Algorithms
This block is implemented using the following planetary parameter values for each planet:
Planet | Equatorial Radius (Re) in Meters | Gravitational Parameter (GM) in m 3 /s 2 | Zonal Harmonic Coefficients (J Values) |
---|---|---|---|
Earth | 6378.1363e3 | 3.986004415e14 | [ 0.0010826269 -0.0000025323 -0.0000016204 ] |
Jupiter | 71492e3 | 1.268e17 | [0.01475 0 -0.00058] |
Mars | 3397.2e3 | 4.305e13 | [ 0.001964 0.000036 ] |
Mercury | 2439.0e3 | 2.2032e13 | 0.00006 |
Moon | 1738.0e3 | 4902.799e9 | 0.0002027 |
Neptune | 24764e3 | 6.809e15 | 0.004 |
Saturn | 60268e3 | 3.794e16 | [0.01645 0 -0.001] |
Uranus | 25559e3 | 5.794e15 | 0.012 |
Venus | 6052.0e3 | 3.257e14 | 0.000027 |
References
[1] Vallado, David, Fundamentals of Astrodynamics and Applications. New York: McGraw-Hill, 1997.
[2] Fortescue, P., J. Stark, G. Swinerd, eds.. Spacecraft Systems Engineering, 3d ed. West Sussex: Wiley & Sons, 2003.
[3] Tewari, A. Boston: Atmospheric and Space Flight Dynamics Modeling and Simulation with MATLAB and Simulink. Boston: Birkhäuser, 2007.
Extended Capabilities
Version History
Introduced in R2009b