Deep Learning For Time Series Data
The examples showcase two ways of using deep learning for classifying time-series data, i.e. ECG data. The first way is using continuous wavelet transform and transfer learning, whereas the second way is using Wavelet Scattering and LSTMs. The explanations of the code are in Chinese. The used data set can be download on:https://github.com/mathworks/physionet_ECG_data/
The video series (in Chinese) on this topic can be found as follows:
https://www.mathworks.com/videos/series/deep-learning-for-time-series-data.html
Cite As
MathWorks Student Competitions Team (2026). Deep Learning For Time Series Data (https://github.com/mathworks/deep-learning-for-time-series-data/releases/tag/v1.0.2), GitHub. Retrieved .
MATLAB Release Compatibility
Platform Compatibility
Windows macOS LinuxTags
Discover Live Editor
Create scripts with code, output, and formatted text in a single executable document.
| Version | Published | Release Notes | |
|---|---|---|---|
| 1.0.2 | See release notes for this release on GitHub: https://github.com/mathworks/deep-learning-for-time-series-data/releases/tag/v1.0.2 |
||
| 1.0.1 | See release notes for this release on GitHub: https://github.com/mathworks/deep-learning-for-time-series-data/releases/tag/v1.0.1 |
||
| 1.0 |
