RUL prediction (C-MAPSS dataset)

Dynamic Adaptation for Length Changeable Weighted Extreme Learning Machine
626 Downloads
Updated 16 Dec 2019

View License

This work introduces a new improvements in LCI-ELM proposed in [1]. The new contributions focus on the adaptation of training model towards higher dimensional “time –varying “data. The proposed Algorithm is investigated using C-MAPSS dataset[2]. PSO[3] and R-ELM[4] training rules are integrated together for this mission.
The details of the proposed Algorithm and the user guide are available in : https://www.researchgate.net/publication/337945405_Dynamic_Adaptation_for_Length_Changeable_Weighted_Extreme_Learning_Machine

[1] Y. X. Wu, D. Liu, and H. Jiang, “Length-Changeable Incremental Extreme Learning Machine,” J. Comput. Sci. Technol., vol. 32, no. 3, pp. 630–643, 2017.
[2] A. Saxena, M. Ieee, K. Goebel, D. Simon, and N. Eklund, “Damage Propagation Modeling for Aircraft Engine Prognostics,” Response, 2008.
[3] M. N. Alam, “Codes in MATLAB for Particle Swarm Optimization Codes in MATLAB for Particle Swarm Optimization,” no. March, 2016.
[4] J. Cao, K. Zhang, M. Luo, C. Yin, and X. Lai, “Extreme learning machine and adaptive sparse representation for image classification,” Neural Networks, vol. 81, no. 61773019, pp. 91–102, 2016.

Cite As

BERGHOUT Tarek,Mouss Leila Hayet, Kadri Ouahab, "Dynamic Adaptation for Length Changeable Weighted Extreme Lerning Machine", (https://www.mathworks.com/matlabcentral/fileexchange/<...>), MATLAB Central File Exchange. Retrieved December 9, 2019.

MATLAB Release Compatibility
Created with R2013b
Compatible with any release
Platform Compatibility
Windows macOS Linux
Categories
Find more on Dimensionality Reduction and Feature Extraction in Help Center and MATLAB Answers

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Published Release Notes
1.2.0

user guid link is added

1.1.0

changes int title .

1.0.0