The files here are:
1- load_data: import data from the csv file
2- visualization: print histograms of features' dist. over the two classes in the training data in a folder called visualization.
3- estimate_: estimate the model of given data
4- classify_: classify based on the model and data
5- testing: test the Naive classifer using alpha=1:0.1:1000 and print a figure called (accuracy 1-1000.pdf) in the visualization folder
6- InspectTheModel: try to measure the impact of each feature value per class
7- jointProb: calc joint probability of two given feature values given a class
8- mutualInformation: calculate the mutual information over the training data to drive the most likely dependent pair of features.
9- testingBonus: test the Naive classifier using the candidate pair of features.
To run a demo, run testing.m but change the start, step, and end as you want!
Cite As
Mahmoud Afifi (2024). Naive Bayes Classifier (https://www.mathworks.com/matlabcentral/fileexchange/64569-naive-bayes-classifier), MATLAB Central File Exchange. Retrieved .
MATLAB Release Compatibility
Platform Compatibility
Windows macOS LinuxCategories
Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Discover Live Editor
Create scripts with code, output, and formatted text in a single executable document.