Programmable linear-quadratic regulator
This model demonstrates that the LQR design approach can be effectively used also for plants characterized by a non-stationary state matrix. A set of controllers is designed for different working points and an FFNN is employed to store this knowledge. The gain matrix K is then adjusted on the fly if the state matrix A changes. In the case of induction motor some entries of the state matrix A are functions of e.g. the stator flux space vector angular velocity and the slip angular velocity of the rotor. More details can be found in Neural-Network-based Programmable State Feedback Controller for Induction Motor Drive (http://dx.doi.org/10.1109/IJCNN.2006.246811). It is also advisable to get familiar with LQR basics prior to playing with this model. See e.g. http://www.mathworks.com/help/control/ref/lqr.html .
Cite As
Bartlomiej Ufnalski (2026). Programmable linear-quadratic regulator (https://uk.mathworks.com/matlabcentral/fileexchange/47988-programmable-linear-quadratic-regulator), MATLAB Central File Exchange. Retrieved .
MATLAB Release Compatibility
Platform Compatibility
Windows macOS LinuxCategories
- Control Systems > Control System Toolbox > Control System Design and Tuning > State-Space Control Design and Estimation >
- Mathematics and Optimization > Optimization Toolbox > Quadratic Programming and Cone Programming >
Tags
Communities
Discover Live Editor
Create scripts with code, output, and formatted text in a single executable document.
| Version | Published | Release Notes | |
|---|---|---|---|
| 1.0.0.0 |
