Linear Discriminant Analysis Code
% [sLDA WLDA M WPCA]=mylda(data,class,n)
% this function written by muhammet balcilar
% yildiz technical university computer engineering department
% istanbul turkiye 2011
% this function convert data from its original space to LDA space
% if number of data samples is less than number of diamension, PCA is
% implemented for reducing number of diamension to #samples-1.
% after PCA, LDA is implemented for reducing diamention to n.
% data is consist of M rows(sample size), N cols(dimensions)
% class is consist of M rows(sample size), 1 cols , each element of class
% is shows class number of each data sample
% (class number must be integer 1 to classsize)
% n is the number of outputs data diamensions.(optionally)
% sLDA is consist of M rows(sample size) n cols(new dimensions)
% WPCA is translate matrix which convert to original space to PCA space
% M is the mean vector of training set
% WLDA is the translate matrix which convert to original space to LDA space
% exaple: there are 4 samples which have 5 diamensions.first two samples
% are member of class 1 others are member of class 2.
% Train= [5.6,5.7,5.5,5.7 5.6;
% 5.7,5.3,5.1,5.0 5.2;
% 10.6,9.9,10.4,10.7 10.2;
% 10.7,9.8,9.9,10 10];
% Class=[1;1;2;2];
% [sLDA WLDA M WPCA]=mylda(Train,Class)
% Test= [4.9 5.5 4.8 5.7 5];
% LDATEST = (Test-M)*WPCA*WLDA
Cite As
Muhammet (2025). Linear Discriminant Analysis Code (https://uk.mathworks.com/matlabcentral/fileexchange/33768-linear-discriminant-analysis-code), MATLAB Central File Exchange. Retrieved .
MATLAB Release Compatibility
Platform Compatibility
Windows macOS LinuxCategories
Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Discover Live Editor
Create scripts with code, output, and formatted text in a single executable document.
