Adaptive Algorithm for Linear Parabolic Problems for 2D Polygonal Domain
No License
Solves FEM analogue to parabolic equation:
d/dt(u)-div(D(x,t)u) +C*Nabla(u)+R*u= f(x,t) u=u(x,t) scalar fct
u(x,t) = u_d(t) on Dirichlet-edge
D(x,t)*Nabla(u)*n(x) = g(x,t) on Neumann-edge.
1)Data can be space and time dependent.
2)Spatial and temporal grid is refined and coarsened adaptively and indepenently of the user.
3)Data is plugged-in via an easy to adapt driver file.
4)Extensive use of vectorisation methods.
5)Input files: finite element grid(coordinates.dat,elements.dat,dirichlet.dat,neumann.dat); driver file
6)Output file: Solution.mat
7)See doc/SpaceTimeAdaptiveAlgorithmForLinearParabolicProblems.pdf for documentation
8) demo.m for demo; help solveP.m for direct help
Cite As
Philipp Wissgott (2026). Adaptive Algorithm for Linear Parabolic Problems for 2D Polygonal Domain (https://uk.mathworks.com/matlabcentral/fileexchange/20868-adaptive-algorithm-for-linear-parabolic-problems-for-2d-polygonal-domain), MATLAB Central File Exchange. Retrieved .
MATLAB Release Compatibility
Platform Compatibility
Windows macOS LinuxCategories
Tags
Discover Live Editor
Create scripts with code, output, and formatted text in a single executable document.
examples/GroundWaterPollution/
examples/HeatEquation/
examples/Model1/
examples/Model2/
tools/
| Version | Published | Release Notes | |
|---|---|---|---|
| 1.0.0.0 | Grammar |
