Mittag-Leffer derivative
Version 1.0.1 (5.15 KB) by
Roberto Garrappa
Evaluates integer-order derivatives of the Mittag-Leffler (ML) function
% ML_DERIV Integer-order derivatives of the Mittag-Leffler function
%
% Ek = ML_DERIV(Z, ALPHA, K) evaluates the K-th integer-order derivative
% of the one-parameter Mittag-Leffler function E_{ALPHA}(Z). Z may be a
% real or complex scalar or vector. ALPHA must be a positive real scalar.
% K must be a scalar integer.
%
% Ek = ML_DERIV(Z, ALPHA, BETA, K) evaluates the K-th integer-order
% derivative of the two-parameter Mittag-Leffler function E_{ALPHA,BETA}(Z).
% Z may be a real or complex scalar or vector. ALPHA must be a positive
% real scalar. BETA must be a real scalar. K must be a scalar integer.
%
% Note: Accuracy may decrease for derivatives of very high order K.
%
% TECHNICAL NOTES
% The derivatives are computed using an algorithm that combines a
% summation formula based on the Prabhakar function with a numerical
% Laplace-transform inversion method [2], guided by the derivatives-
% balancing technique introduced in [1]. A full description of the
% algorithm and its applications is provided in [3]. If this function is
% used for research or publications, please cite [3].
%
% REFERENCES
% [1] R. Garrappa and M. Popolizio, Computing the matrix Mittag-Leffler
% function with applications to fractional calculus, J. Sci. Comput.,
% 2018, 17(1), 129–153.
%
% [2] R. Garrappa, Numerical Evaluation of two- and three-parameter
% Mittag-Leffler functions, SIAM J. Numer. Anal., 2015, 53(3),
% 1350–1369.
%
% [3] D. Biolek, R. Garrappa, F. Mainardi, M. Popolizio, Derivatives of
% Mittag-Leffler functions: theory, computation and applications,
% Nonlinear Dynamics, 113, 34389–34403 (2025).
% https://doi.org/10.1007/s11071-025-11682-3
%
% Please, report any problem or comment to :
% roberto dot garrappa at uniba dot it
%
% Copyright (c) 2025
%
% Authors:
% Roberto Garrappa (University of Bari, Italy)
% roberto dot garrappa at uniba dot it
% Homepage: https://www.dm.uniba.it/members/garrappa
Cite As
D. Biolek, R. Garrappa, F. Mainardi, M. Popolizio, Derivatives of Mittag-Leffler functions: theory, computation and applications, Nonlinear Dynamics, 113, 34389–34403 (2025). https://doi.org/10.1007/s11071-025-11682-3
MATLAB Release Compatibility
Created with
R2024a
Compatible with any release
Platform Compatibility
Windows macOS LinuxTags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Discover Live Editor
Create scripts with code, output, and formatted text in a single executable document.
