Jacobi method

Jacobi method of solution of system of equations
2 Downloads
Updated 10 Apr 2025

View License

Jacobi method of solution of system of equations
We can express linear equations in matrix form A*X=B ...... (i)
where A is called Coefficient matrix and B Right hand side vector.
Now, decomposing the matrix A into its diagonal and unondiagonal component,
we get:
A = D + R, where
Further, the system of linear equations (i) can be expressed as:
(D+R)*X = B
or D*X + R*X = B
or X = inv(D)*B – inv(D)*R*X –(ii)
In Gauss-Seidel method, the equation (ii) is solved iteratively by solving the left hand value of x and then using previously found x on right hand side. Mathematically, the iteration process in Gauss-Seidel method can be expressed as:
X(n+1) = inv(D)*B – inv(D)*R*X(n) or inv(D)*(B – R*X(n) )
Note : The matrix should be diagonally dominant matrix.
Example : Solve using Jacobi method:
10x1 -x2+ 2x3 = 6
-x1 + 11x2 - x3 +3x4 = 25
2x1 - x2+ 10x3 -x4 = -11
3x2 - x3 + 8x4 = 15
Solution: The equation can be written as, A*X = B where
Decomposing A = D+R
Enter Coefficient Matrix A :[10 -1 2 0;-1 11 -1 3; 2 -1 10 -1;0 3 -1 8]
Enter RHS Matrix B :[6 25 -11 15]'
Enter no of iteration : 20
D =
10 0 0 0
0 11 0 0
0 0 10 0
0 0 0 8
R =
0 -1 2 0
-1 0 -1 3
2 -1 0 -1
0 3 -1 0
X =
Columns 1 through 6
0 0.6000 1.0473 0.9326 1.0152 0.9890
0 2.2727 1.7159 2.0533 1.9537 2.0114
0 -1.1000 -0.8052 -1.0493 -0.9681 -1.0103
0 1.8750 0.8852 1.1309 0.9738 1.0214
Columns 7 through 12
1.0032 0.9981 1.0006 0.9997 1.0001 0.9999
1.9922 2.0023 1.9987 2.0004 1.9998 2.0001
-0.9945 -1.0020 -0.9990 -1.0004 -0.9998 -1.0001
0.9944 1.0036 0.9989 1.0006 0.9998 1.0001
Columns 13 through 18
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
-1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Columns 19 through 20
1.0000 1.0000
2.0000 2.0000
-1.0000 -1.0000
1.0000 1.0000
Here, we see that we get solution from 13th iteration onwards.

Cite As

Langel Thangmawia (2026). Jacobi method (https://uk.mathworks.com/matlabcentral/fileexchange/180737-jacobi-method), MATLAB Central File Exchange. Retrieved .

MATLAB Release Compatibility
Created with R2024b
Compatible with any release
Platform Compatibility
Windows macOS Linux
Tags Add Tags
Version Published Release Notes
1.0.1

Explaination and example added

1.0.0