FPFS-CMC

Version 1.0.0 (8.24 KB) by Samet Memis
A Classification Method in Machine Learning Based on Soft Decision-Making via Fuzzy Parameterized Fuzzy Soft Matrices
12 Downloads
Updated 10 Feb 2022

FPFS-CMC

A Classification Method in Machine Learning Based on Soft Decision-Making via Fuzzy Parameterized Fuzzy Soft Matrices

Citation: Memiş, S., Enginoğlu, S., Erkan, U., 2022. A Classification Method in Machine Learning Based on Soft Decision-Making via Fuzzy Parameterized Fuzzy Soft Matrices. Soft Computing, 26(3), 1165–1180. doi: https://doi.org/10.1007/s00500-021-06553-z

Abstract:

Fuzzy parameterized fuzzy soft matrices (fpfs-matrices) which can model problems involving fuzzy objects and parameters are one of the mathematical tools used to deal with decision-making problems. To utilize soft decision-making methods via fpfs-matrices in machine learning is likely to draw much scholarly attention. In this paper, we propose Comparison Matrix-Based Fuzzy Parameterized Fuzzy Soft Classifier (FPFS-CMC) in order to transfer modeling success of fpfs-matrices to machine learning. We then compare FPFS-CMC with Fuzzy Soft Set Classifier (FSSC), FussCyier, Fuzzy Soft Set Classification Using Hamming Distance (HDFSSC), and Fuzzy k-Nearest Neighbor (Fuzzy kNN) in consideration of accuracy, precision, recall, macro-F-score, and micro-F-score performance metrics, and 15 datasets in UCI Machine Learning Repository. Besides, we compare the proposed classifier with the state-of-the-art Support Vector Machine (SVM), Decision Tree (DT), and Adaptive Boosting (AdaBoost) in terms of five performance metrics herein. Afterward, the results from the experiments are analyzed by employing the Friedman and Nemenyi tests to assess the statistical significance of the differences in performances. Both experimental and statistical results show that FPFS-CMC outperforms the others. Finally, we provide the conclusive remarks and some suggestions for further research.

Cite As

Samet Memis (2025). FPFS-CMC (https://github.com/sametmemis/FPFS-CMC), GitHub. Retrieved .

MATLAB Release Compatibility
Created with R2024a
Compatible with any release
Platform Compatibility
Windows macOS Linux
Tags Add Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Versions that use the GitHub default branch cannot be downloaded

Version Published Release Notes
1.0.0

To view or report issues in this GitHub add-on, visit the GitHub Repository.
To view or report issues in this GitHub add-on, visit the GitHub Repository.