Fault diagnosis in refrigeration systems
Version 2.0.0 (33.5 MB) by
ferzan katircioglu
A machine learning application is recommended to diagnose the refrigerant undercharge and refrigerant overcharge faults
1. First, run the file named Main in the Feature Extraction folder. Obtain the features for the dataset using 2D-DWT.
2. You can reduce the number of attributes later if you wish. For this, run the Main file in the Feature Selection folder.
Select one of the PCA and Relief methods here.
3. Run the Main program in the Machine Learning folder to get your final dataset into four different machine learning algorithms.
The performance evaluation results of the methods are available in the variable named metric_data.
4. Check the article given below to get more details.
Katırcıoğlu F, Cingiz Z.
Fault diagnosis for overcharge and undercharge conditions in refrigeration systems using infrared thermal images.
Proceedings of the Institution of Mechanical Engineers,
Part E: Journal of Process Mechanical Engineering. 2023;0(0). doi:10.1177/09544089221148065
Cite As
Katırcıoğlu F, Cingiz Z. Fault diagnosis for overcharge and undercharge conditions in refrigeration systems using infrared thermal images. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering. 2023;0(0). doi:10.1177/09544089221148065
MATLAB Release Compatibility
Created with
R2022b
Compatible with any release
Platform Compatibility
Windows macOS LinuxTags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Discover Live Editor
Create scripts with code, output, and formatted text in a single executable document.
