Problem 44341. Hexagonal numbers on a spiral matrix
Put hexagonal numbers in a ( m x m ) spiral matrix and return the sum of its diagonal elements.
Formula of hexagonal numbers h(n) = 2n^2 - n
If m = 5;
spiral(5) = 21 22 23 24 25 20 7 8 9 10 19 6 1 2 11 18 5 4 3 12 17 16 15 14 13
First 5x5=25 hexagonal numbers are;
h = [1 6 15 28 45 66 91 120 153 190 231 276 325 378 435 496 561 630 703 780 861 946 1035 1128 1225]
We put them in a spiral format;
spiralHex = [ 861 946 1035 1128 1225 780 91 120 153 190 703 66 1 6 231 630 45 28 15 276 561 496 435 378 325
And sum its diag = 861 + 91 + 1 + 15 + 325 = 1293.
Return the output as char.
Solution Stats
Problem Comments
Solution Comments
Show commentsProblem Recent Solvers163
Suggested Problems
-
4470 Solvers
-
Remove entire row and column in the matrix containing the input values
536 Solvers
-
Calculate the Number of Sign Changes in a Row Vector (No Element Is Zero)
859 Solvers
-
5996 Solvers
-
Flip the vector from right to left
10434 Solvers
More from this Author92
Problem Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!