Given a number n, return the terminal value of the number chain formed by summing the square of the digits. According to the Project Euler problem, this number chain always terminates with either 1 or 89.
Project Euler Problem 92: Link
Let consider the case x=954
954 -> 122 -> 9 -> 81 -> 65 -> 61 -> 37 -> 58 -> 89 -> 145 -> 42 -> 20 -> 4 -> 16 -> 37
So 37 is seen twice, it should end up with 37, no ?
No, 89 shows up before 37 does
By the description at ProjectEuler.net, it seems M is correct in their statement. The description there reads: "continuously [...] form a new number until it [that number just formed] has been seen before." That is exactly what M has done. Project Euler says furthermore: "[...] EVERY starting number will eventually arrive at 1 or 89." That is _not_ the same as stating: "this number chain always terminates with either 1 or 89". The key difference is in "arrives at" (the number appears) versus "terminates with" (the number is the first to appear twice in the sequence). In M's example, the sequence truly 'terminates with' 37 (as M said), but before it terminates the sequence had 'arrived at' 89.
This solution requires Neural Network Toolbox
7264 Solvers
468 Solvers
Choose the best fitting dominoes
161 Solvers
145 Solvers
Number of digits in an integer
271 Solvers