I am pleased that you solved this problem, David. Congratulations! I didn't find any particularly easier way of solving it. The crucial step is showing that the probability density is proportional to your 1/y^3 for points within the corresponding "kite-shaped region". I used the Jacobian between two coordinate systems to show that. After dividing that region into two halves everything falls into place, though in my dotage I had to make heavy use of the Symbolic Toolbox to check for errors. (I hope this problem will serve as a warning to people who recommend this method of producing random numbers with a predetermined sum.) R. Stafford
Group
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
I am pleased that you solved this problem, David. Congratulations! I didn't find any particularly easier way of solving it. The crucial step is showing that the probability density is proportional to your 1/y^3 for points within the corresponding "kite-shaped region". I used the Jacobian between two coordinate systems to show that. After dividing that region into two halves everything falls into place, though in my dotage I had to make heavy use of the Symbolic Toolbox to check for errors. (I hope this problem will serve as a warning to people who recommend this method of producing random numbers with a predetermined sum.) R. Stafford