second order nonlinear ode with polynomial terms

5 views (last 30 days)
Hi everyone! I would resolve the following nonlinear differential equation:
f(Y) + b(Y) (Y')^2 + g(Y) Y'' = A
where Y is a function of x, i.e. Y = Y(x), and
f(Y) = a1 + a2*Y + a3*Y^2 + a4*Y^3
g(Y) = b1 f(Y)/Y^3
b(Y) = c1 (a1 + a2 Y + a3 Y^2)/Y^3
In this example A = cost, but it could be A = A(x). I have no idea how to solve with matlab.. some suggestions? can I use some usual ode-routines?
Thanks in advance for all your support.
Pinco
  5 Comments
Jan
Jan on 30 Apr 2013
@Pinco: Bumping after 2 hours is not useful. When the contributors do not find enough information to create an answer, reading the question again without any additional explanantions, is a waste of time. So please do not bump after 2 hours without showing, what you have done in this time.
Pinco
Pinco on 30 Apr 2013
@Kye Taylor @Chandrakanth, : You are right, there was a mistake (I fixed it): A = A(x). In this case, the function A is completely known.
' = d/dx.
I have to find Y(x), thus I have only independent variable x.
Is it then sufficient to solve an ODE system?
@Jan Simon: I apologize for refreshing, but I was very worried about this solution

Sign in to comment.

Answers (1)

Kye Taylor
Kye Taylor on 30 Apr 2013
Edited: Kye Taylor on 30 Apr 2013
You must write the ODE as a system of first-order ODEs. Use the substitution u1 = y and u2 = y'. Then, you'll end up with equations like
u1' = u2
u2' = F(u1,u2)
where F is a function of u1 and u2 (y and y')... Once you have those equations, create a function named F, like
function uPrime = F(u)
uPrime(1) = u(2);
uPrime(2) = % code for your F(u1,u2)
Note that the input u should be a two-dimensional vector where the comoponent u(1) represents u1, and u(2) represents u2. The output is also a two-dimensional vector, one element for each first-order differential equation in the system above. Such an interface to F is dictated by the requirements of the fsolve function.
  4 Comments
Pinco
Pinco on 1 May 2013
I implemented the function in this way:
function xprime = myode(t,x)
global a1 a2 a3 a4 h0 k
A = (12.* x(1).^3)/h0^2;
B = a1 + 2*a2.*x(1) + 3*a3.*x(1).^2 + 4*a4.*x(1).^3;
C = 3*a1 + 4*a2.*x(1).^2 + 3*a3.*x(1).^2;
xprime = [x(1); ...
A.*(1- k./B) + (C./x(1).*B).* x(2).^2];
Now I would impose some boundary conditions, i.e. Y(inf) = L, y(-inf) = l, dY(inf)/dx = dY(-inf)/dx = 0. How can I do this?
Pinco
Pinco on 1 May 2013
Now I'm trying to use bvp4c for boundary value problems. According to the second example in the Matlab help for bvp4c, I wrote this code:
global a0 a1 a2 a3 a4 h0 k Ja Jb
a0 = 2.0377638272727268 * 10^3;
a1 = -7.105521894545453 * 10^3;
a2 = 9.234000147272726 * 10^3;
a3 = -5.302489919999999 * 10^3;
a4 = 1.1362478399999998 * 10^3;
h0 = 45.5 * 10^-10;
k = 5.92;
Ja = 1.025;
Jb = 1.308;
meshX = linspace(0,16);
Y0 = [Ja, 0]; %[Y(0), Y'(0)]
init = bvpinit(meshX,Y0);
sol = bvp4c(@myode2,@mybc2,init);
======
function yprime = myode2(x,y)
global a1 a2 a3 a4 h0 k
A = (12.* y(1).^3)/h0^2;
B = a1 + 2*a2.*y(1) + 3*a3.*y(1).^2 + 4*a4.*y(1).^3;
C = 3*a1 + 4*a2.*y(1).^2 + 3*a3.*y(1).^2;
yprime = [y(1); ...
A.*(1- k./B) + (C./y(1).*B).* y(2).^2];
=====
function res = mybc(ya,yb)
global Ja Jb
res =[ya(2)
yb(2)
ya(1) - Ja
yb(1) - Jb];
I would impose the boundary conditions on the first derivative (equals to 0 at the extremes) and the function itself (equals to Ja and Jb, respectively). Matlab returns some errors.. where is the error?

Sign in to comment.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!