Constraining a single element in non-negative least squares

14 views (last 30 days)
Hello,
I'm using non-negative least squares to find a solution to a classic multi-parameter linear regression problem.
xhat = arg min J(x) = | | E x - f | |, subject to x >= 0,
with E a n-by-m matrix of rank m.
In one instance, I got what I needed using lsqnonneg. I then modify the problem as follows
xhat = arg min J(x) = | | Etilda x - ftilda | |, subject to x(m+1) >= 0 (i.e. only the last element of x is constrained),
with Etilda = [E etilda], etilda an n-vector. For the sake of simplicity, etilda is orthogonal to the column space of E (i.e. etilda is linearly independent of ej, the column vectors of E, j = [1:m]).
Is it possible to perform this optimization using lsqnonneg? If not, are there alternatives to that?

Answers (0)

Categories

Find more on Linear and Nonlinear Regression in Help Center and File Exchange

Products

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!