bias problem with trainb
    5 views (last 30 days)
  
       Show older comments
    
    Emiliano Rosso
      
 on 1 Jul 2016
  
    
    
    
    
    Commented: Emiliano Rosso
      
 on 2 Jul 2016
            I need to train a supervised neural network to linearly separate a set of inputs with logical output 0,1 in batch training. My inputs is inputstemp2 (100,2000) of double precision & target is dividetargets(2,2000) of double 0 & 1. My code is :
         mynet=perceptron;
         mynet.trainFcn=  'trainb';
         mynet.inputWeights.learnFcn='learnp';   %default
         mynet.biases.learnFcn= 'learnp';        %default
         mynet.biasConnect =[1];
         mynet.outputs{1}.processFcns = {};
         mynet.inputs{1}.processFcns = {'mapstd','processpca'};
         mynet.divideFcn = 'divideblock';
         mynet.divideParam.trainRatio = 80/100;
         mynet.divideParam.valRatio = 10/100;
         mynet.divideParam.testRatio =10/100;
         mynet.trainParam.showWindow = false;
         mynet.trainParam.showCommandLine = false;
         mynet.trainParam.epochs=500;
         mynet.efficiency.memoryReduction=1;
        [mynet,tr]=train(mynet,inputstemp2,dividetargets);
No problem if mynet.biasConnect =[0] but if I set mynet.biasConnect =[1] Matlab return:
Error using  * 
Inner matrix dimensions must agree.
Error in learnp>apply (line 93)
  dw = e*p';
Error in trainb>train_network (line 231)
            [db,BLS{i}] = learnFcn.apply(net.b{i}, ...
Error in trainb (line 55)
        [out1,out2] = train_network(varargin{2:end});
ecc.... The same if I use linearlayer and harlim. Somebody can explain me why bias is not accepted?
0 Comments
Accepted Answer
  Greg Heath
      
      
 on 1 Jul 2016
        Just use the current (i.e., non-obsolete) classifier
 net = patternnet([]); % [] => No hidden layer for linear model
For documentation
 help patternnet
 doc  patternnet
Hope this helps.
Thank you for formally accepting my answer
Greg
More Answers (0)
See Also
Categories
				Find more on Deep Learning Toolbox in Help Center and File Exchange
			
	Products
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
