Matrix Polynomial Equation solution
6 views (last 30 days)
Show older comments
I have been trying for some time to solve the equation: A*(T.^4)+B*T=C+D where A, B, C, D, and T are all matrices, and T.^4 here takes its matlab meaning of being each cell of T taken individually to the power of 4. I have been trawling the help guide and the internet for some way of solving such a polynomial equation with matrices, but I can't find anything. If anyone could give any suggestions I would be so very grateful. Many thanks, Maria
0 Comments
Accepted Answer
Dr. Seis
on 12 Dec 2011
I ran this as a test, and it looked like the value I randomly chose for "T" below matched the "TT" predicted by "fsolve". It looked like "C" and "D" were both known variables, so I assumed they were already summed together.
A = rand(3,3);
B = rand(3,3);
T = rand(3,3);
C_plus_D = A*(T.^4) + B*T;
TT = fsolve(@(TT)A*(TT.^4) + B*TT - C_plus_D, zeros(3,3));
More Answers (0)
See Also
Categories
Find more on Polynomials in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!