RL SAC agent structure
9 views (last 30 days)
Show older comments
I’ve created an SAC agent, but I'm encountering the error below.
Error using rl.internal.validate.mapFunctionMeanStdOutput (line 10)
Deep neural network for continuous gaussian function must have 2 output layers, one for mean and one for standard deviation.
Error in rlContinuousGaussianActor (line 93)
model = rl.internal.validate.mapFunctionMeanStdOutput(model,nameValueArgs.ActionMeanOutputNames,nameValueArgs.ActionStandardDeviationOutputNames,"actor");
Error in RL_agent_1 (line 158)
actor1 = rlContinuousGaussianActor(actorNetwork1, obsInfo1, actInfo1, ...
I’ve also attached the code for my RL agent, and I’ve bolded the relevant part, which clearly shows that I already have two layers—one for the mean and one for the standard deviation.
% Create environment
codeenv = createOpfEnv();
% Retrieve observation and action specifications
obsInfo = getObservationInfo(env); % Observation info for all agents
actInfo = getActionInfo(env); % Action info for all agents
% Separate the observation and action information for each agent
numAgents = 3; % Example with 3 agents
% Separate observation and action info
obsInfo1 = obsInfo{1}; % Observation info for agent 1
obsInfo2 = obsInfo{2}; % Observation info for agent 2
obsInfo3 = obsInfo{3}; % Observation info for agent 3
actInfo1 = actInfo{1}; % Action info for agent 1
actInfo2 = actInfo{2}; % Action info for agent 2
actInfo3 = actInfo{3}; % Action info for agent 3
%% Define actor networks for each agent
% Define the actor network for Agent 1
actorNetwork1 = [
featureInputLayer(obsInfo1.Dimension(1), 'Normalization', 'none', 'Name', 'state1')
fullyConnectedLayer(64, 'Name', 'fc1_1')
reluLayer('Name', 'relu1_1')
fullyConnectedLayer(64, 'Name', 'fc2_1')
reluLayer('Name', 'relu2_1')
fullyConnectedLayer(64, 'Name', 'fc3_1')
reluLayer('Name', 'relu3_1')
fullyConnectedLayer(1, 'Name', 'mean1') % Output for the mean
fullyConnectedLayer(1, 'Name', 'std1') % Output for the standard deviation
];
% Define the actor network for Agent 2
actorNetwork2 = [
featureInputLayer(obsInfo2.Dimension(1), 'Normalization', 'none', 'Name', 'state2')
fullyConnectedLayer(64, 'Name', 'fc1_2')
reluLayer('Name', 'relu1_2')
fullyConnectedLayer(64, 'Name', 'fc2_2')
reluLayer('Name', 'relu2_2')
fullyConnectedLayer(64, 'Name', 'fc3_2')
reluLayer('Name', 'relu3_2')
fullyConnectedLayer(1, 'Name', 'mean2') % Output for the mean
fullyConnectedLayer(1, 'Name', 'std2') % Output for the standard deviation
];
% Define the actor network for Agent 3
actorNetwork3 = [
featureInputLayer(obsInfo3.Dimension(1), 'Normalization', 'none', 'Name', 'state3')
fullyConnectedLayer(64, 'Name', 'fc1_3')
reluLayer('Name', 'relu1_3')
fullyConnectedLayer(64, 'Name', 'fc2_3')
reluLayer('Name', 'relu2_3')
fullyConnectedLayer(64, 'Name', 'fc3_3')
reluLayer('Name', 'relu3_3')
fullyConnectedLayer(1, 'Name', 'mean3') % Output for the mean
fullyConnectedLayer(1, 'Name', 'std3') % Output for the standard deviation
];
% For each agent, we'll define a critic network that combines the state and action
statePath1 = [
featureInputLayer(obsInfo1.Dimension(1), 'Normalization', 'none', Name="state1")
fullyConnectedLayer(64, Name="state_fc1_1")
reluLayer(Name="state_relu1_1")
];
actionPath1 = [
featureInputLayer(actInfo1.Dimension(1), 'Normalization', 'none', Name="action1")
fullyConnectedLayer(64, Name="action_fc1_1")
reluLayer(Name="action_relu1_1")
];
commonPath1 = [
concatenationLayer(1, 2, Name="concat1")
fullyConnectedLayer(64, Name="common_fc1_1")
reluLayer(Name="common_relu1_1")
fullyConnectedLayer(64, Name="common_fc2_1")
reluLayer(Name="common_relu2_1")
fullyConnectedLayer(1, Name="value1")
];
statePath2 = [
featureInputLayer(obsInfo2.Dimension(1), 'Normalization', 'none', Name="state2")
fullyConnectedLayer(64, Name="state_fc2_2")
reluLayer(Name="state_relu2_2")
];
actionPath2 = [
featureInputLayer(actInfo2.Dimension(1), 'Normalization', 'none', Name="action2")
fullyConnectedLayer(64, Name="action_fc2_2")
reluLayer(Name="action_relu2_2")
];
commonPath2 = [
concatenationLayer(1, 2, Name="concat2")
fullyConnectedLayer(64, Name="common_fc1_2")
reluLayer(Name="common_relu1_2")
fullyConnectedLayer(64, Name="common_fc2_2")
reluLayer(Name="common_relu2_2")
fullyConnectedLayer(1, Name="value2")
];
statePath3 = [
featureInputLayer(obsInfo3.Dimension(1), 'Normalization', 'none', Name="state3")
fullyConnectedLayer(64, Name="state_fc3_3")
reluLayer(Name="state_relu3_3")
];
actionPath3 = [
featureInputLayer(actInfo3.Dimension(1), 'Normalization', 'none', Name="action3")
fullyConnectedLayer(64, Name="action_fc3_3")
reluLayer(Name="action_relu3_3")
];
commonPath3 = [
concatenationLayer(1, 2, Name="concat3")
fullyConnectedLayer(64, Name="common_fc1_3")
reluLayer(Name="common_relu1_3")
fullyConnectedLayer(64, Name="common_fc2_3")
reluLayer(Name="common_relu2_3")
fullyConnectedLayer(1, Name="value3")
];
%% Assemble critic networks for each agent
% Combine state and action paths
criticNetwork1 = layerGraph(statePath1);
criticNetwork1 = addLayers(criticNetwork1, actionPath1);
criticNetwork1 = addLayers(criticNetwork1, commonPath1);
criticNetwork1 = connectLayers(criticNetwork1, 'state_relu1_1', 'concat1/in1');
criticNetwork1 = connectLayers(criticNetwork1, 'action_relu1_1', 'concat1/in2');
criticNetwork2 = layerGraph(statePath2);
criticNetwork2 = addLayers(criticNetwork2, actionPath2);
criticNetwork2 = addLayers(criticNetwork2, commonPath2);
criticNetwork2 = connectLayers(criticNetwork2, 'state_relu2_2', 'concat2/in1');
criticNetwork2 = connectLayers(criticNetwork2, 'action_relu2_2', 'concat2/in2');
criticNetwork3 = layerGraph(statePath3);
criticNetwork3 = addLayers(criticNetwork3, actionPath3);
criticNetwork3 = addLayers(criticNetwork3, commonPath3);
criticNetwork3 = connectLayers(criticNetwork3, 'state_relu3_3', 'concat3/in1');
criticNetwork3 = connectLayers(criticNetwork3, 'action_relu3_3', 'concat3/in2');
%% Set options for the actor and critic
actorOptions = rlRepresentationOptions('Optimizer', 'adam', 'LearnRate', 1e-4, 'GradientThreshold', 1);
criticOptions = rlRepresentationOptions('Optimizer', 'adam', 'LearnRate', 1e-4, 'GradientThreshold', 1);
%% Create actor and critic representations for each agent
% Use continuous actor for each agent (as required by SAC)
actor1 = rlContinuousGaussianActor(actorNetwork1, obsInfo1, actInfo1, ...
'ActionMeanOutputNames', 'mean1', 'ActionStandardDeviationOutputNames', 'std1');
actor2 = rlContinuousGaussianActor(actorNetwork2, obsInfo2, actInfo2, ...
'ActionMeanOutputNames', 'mean2', 'ActionStandardDeviationOutputNames', 'std2');
actor3 = rlContinuousGaussianActor(actorNetwork3, obsInfo3, actInfo3, ...
'ActionMeanOutputNames', 'mean3', 'ActionStandardDeviationOutputNames', 'std3');
% Create critic representations for each agent
%% Create Q-value critics for each agent
critic1 = rlQValueRepresentation(criticNetwork1, obsInfo1, actInfo1, criticOptions);
critic2 = rlQValueRepresentation(criticNetwork2, obsInfo2, actInfo2, criticOptions);
critic3 = rlQValueRepresentation(criticNetwork3, obsInfo3, actInfo3, criticOptions);
%% Define the SAC agent for each agent
agentOptions = rlSACAgentOptions('SampleTime', 1, ...
'TargetSmoothFactor', 1e-3, ...
'TargetUpdateFrequency', 1, ...
'ExperienceBufferLength', 1e6);
agent1 = rlSACAgent(actor1, critic1, agentOptions);
agent2 = rlSACAgent(actor2, critic2, agentOptions);
agent3 = rlSACAgent(actor3, critic3, agentOptions);
%% Training options and training process
trainOpts = rlTrainingOptions(...
'MaxEpisodes', 500, ...
'MaxStepsPerEpisode', 100, ...
'ScoreAveragingWindowLength', 100, ...
'Verbose', true, ...
'Plots', 'training-progress');
%% Train the agents
train(agent1, env, trainOpts);
train(agent2, env, trainOpts);
train(agent3, env, trainOpts);
0 Comments
Accepted Answer
Gayathri
on 6 Nov 2024
To resolve the error “Deep neural network for continuous gaussian function must have 2 output layers, one for mean and one for standard deviation.” we will have to add two separate paths for mean and standard deviation separately. The error will not get resolved just by adding two output layers alone. Please refer to the below code for resolving the error.
inputLayer = featureInputLayer(obsInfo2.Dimension(1), 'Normalization', 'none', 'Name', 'state2');
meanPath = [
fullyConnectedLayer(64, 'Name', 'fc1_mean')
reluLayer('Name', 'relu1_mean')
fullyConnectedLayer(64, 'Name', 'fc2_mean')
reluLayer('Name', 'relu2_mean')
fullyConnectedLayer(64, 'Name', 'fc3_mean')
reluLayer('Name', 'relu3_mean')
fullyConnectedLayer(1, 'Name', 'mean2') % Output for the mean
];
% Define the standard deviation path
stdPath = [
fullyConnectedLayer(64, 'Name', 'fc1_std')
reluLayer('Name', 'relu1_std')
fullyConnectedLayer(64, 'Name', 'fc2_std')
reluLayer('Name', 'relu2_std')
fullyConnectedLayer(64, 'Name', 'fc3_std')
reluLayer('Name', 'relu3_std')
fullyConnectedLayer(1, 'Name', 'std2') % Output for the standard deviation
];
% Create the layer graph
actorNetwork2 = layerGraph(inputLayer);
actorNetwork2 = addLayers(actorNetwork2, meanPath);
actorNetwork2 = addLayers(actorNetwork2, stdPath);
% Connect the input layer to both the mean and std paths
actorNetwork2 = connectLayers(actorNetwork2, 'state_input', 'fc1_mean');
actorNetwork2 = connectLayers(actorNetwork2, 'state_input', 'fc1_std');
I have given this code for “actorNetwork2” as an example. Please make the same changes in “actorNetwork1” and “actorNetwork3” to resolve all the errors.
You can also connect two paths for mean and standard deviation in a different format if required.
By implementing the mentioned changes, the training will begin. Attaching a small snippet of the training window below.
For more information on “rlContinuousGaussianActor” please refer to the following link.
Hope you find this information helpful.
More Answers (0)
See Also
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!