Solution of a second order differential equation
2 views (last 30 days)
Show older comments
I am unable to solve a differential equation using dsove command in Matlab. I get the Warning: Unable to find symbolic solution. Can you please help me with it.
clc
clear
close
syms y(x)
L=1;
A=1;
p=x^2;
s=10*diff(y,x)+100000*(diff(y,x))^3;
DE = diff(s*A,x,1)+p;
cond = [y(0.0)==0.0, y(L)==1.0];
sol = dsolve(DE==0.0,cond)
Also I tried using bvp4c to solve it but was still unsuccessful. I have enclosed the code below. Thanks a lot for your help
!
clc
clear
close
L=1;
A=1;
% Using bvp4c
x=linspace(0,L,12);
yi=bvpinit(x,[1,1])
sol=bvp4c(@bvpfcn,@bcfcn,yi)
function dydx = bvpfcn(x,y,A)
dydx = zeros(2,1);
dydx = [y(2)
-x^2/(10*A+300000*(y(2))^2)];
end
function res = bcfcn(ya,yb)
res = [ya(1)-0.0
yb(1)-1.0];
end
0 Comments
Answers (1)
Sam Chak
on 31 Jan 2024
Hi @Swami
I've got a solution from the bvp4c() solver.
syms y(x)
L = 1;
A = 1;
p = x^2;
s = 10*diff(y,x) + 100000*(diff(y,x))^3
DE = diff(s*A,x,1) + p == 0;
[V, S] = odeToVectorField(DE)
clear
L = 1;
%% Using bvp4c
x = linspace(0, L, 21);
yi = bvpinit(x, [1, 1]);
sol = bvp4c(@bvpfcn, @bcfcn, yi);
x = sol.x;
y = sol.y;
%% Plot results
plot(x, y, '-o', 'linewidth', 1), grid
xlabel('x', 'fontsize', 14)
ylabel('y', 'fontweight', 'bold', 'fontsize', 14)
legend('y_{1}', 'y_{2}', 'location', 'southeast')
%% Differential equations
function dydx = bvpfcn(x,y)
A = 1;
dydx = [y(2);
- (x^2)/(300000*y(2)^2 + 10*A)];
end
%% Boundary condition
function res = bcfcn(ya,yb)
res = [ya(1) - 0;
yb(1) - 1];
end
2 Comments
Sam Chak
on 31 Jan 2024
Hi @Swami
I'm glad it works. What I did, I moved 'A = 1' to the bvpfcn() function so that I don't need to call unnecessary extra parameters. I like to place constants inside the function unless I want to test out some parameters. Generally, your bvp4c code works if you make a change to this line using this syntax to call 'A'.
sol = bvp4c(@(x, y) bvpfcn(x, y, A), @bcfcn, yi)
If you find the solution helpful, please consider clicking 'Accept' ✔ on the answer and voting 👍 for it. Thanks a bunch!
See Also
Categories
Find more on Boundary Value Problems in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!