How can I the show the solution/results in table form?
5 views (last 30 days)
Show older comments
Hi! I'm doing a Simpsons 1/3 rule Numerical Methods, How can I show the results each solution in table form before the answer?
Example:
x f(x) (Odd or Even) f(x)*(Odd or Even)
-2.00000 0.05399 1.00000 0.05399
-1.55000 0.12001 4.00000 0.48004
-1.10000 0.21785 2.00000 0.43570
-0.65000 0.32297 4.00000 1.29188
-0.20000 0.39104 2.00000 0.78208
0.25000 0.38667 4.00000 1.54668
0.70000 0.31225 2.00000 0.62450
1.15000 0.20594 4.00000 0.82376
1.60000 0.11092 1.00000 0.11092
summation of [f(xi)* (odd or even)] 6.14955
Answer = Sq. Unit
Here;s my code:
eqn= 0.2+(25*x)-(200*x^2)+(675*x^3)-(900*x^4)+(400*x^5)
a= 0
b= 0.8
n= 8
clear
clc
format short
P=input ('Enter the Equation: ','s');
f=inline(P)
a=input ('Enter the Lower Value Limit: ')
b=input ('Enter the Upper Value Limit: ')
disp('Number of Segments "n" should be Divisible by 2!')
n=input ('Enter the Number of Segments: ')
h=round((b-a)/n,4)
odd=0;
even=0;
for i=1:2:n-1
x=round(a+i*h,4);
odd=round(odd+f(x),4);
end
for i=2:2:n-2
x=round(a+i*h,4);
even=round(even+f(x),4);
end
interc(i,:)=[x,f(x)]
I=round((h/3)*(f(a)+(4*odd)+(2*even)+f(b)),4);
fprintf('Integrated Value is %0.4f Sq. Unit', I)
0 Comments
Answers (1)
Benjamin Kraus
on 2 Aug 2022
There is still some polish you probably need to make, but here is one approach to displaying your results in a table:
a = 0;
b = 0.8;
n = 8;
f = @(x) 0.2+(25*x)-(200*x^2)+(675*x^3)-(900*x^4)+(400*x^5);
h = round((b-a)/n,4);
odd = 0;
even = 0;
oddOrEven = NaN(n-1,1);
x = NaN(n-1,1);
interc = NaN(n-1,1);
for i = 1:2:n-1
x(i) = round(a+i*h,4);
interc(i) = f(x(i));
odd = round(odd+interc(i),4);
oddOrEven(i) = odd;
end
for i = 2:2:n-2
x(i) = round(a+i*h,4);
interc(i) = f(x(i));
even = round(even+interc(i),4);
oddOrEven(i) = even;
end
I = round((h/3)*(f(a)+(4*odd)+(2*even)+f(b)),4);
results = table(x, interc, oddOrEven, interc.*oddOrEven, ...
'VariableNames',{'x','f(x)','(Odd or Even)','f(x)*(Odd or Even)'});
disp(results)
fprintf('Integrated Value is %0.4f Sq. Unit\n', I)
2 Comments
Benjamin Kraus
on 2 Aug 2022
I don't know the specifics of the Simpsons 1/3 Rule, so I'll leave the details of the algorithm up to you.
See Also
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!