Info
This question is closed. Reopen it to edit or answer.
how to solve a set of nonlinear second order ode function
2 views (last 30 days)
Show older comments
Hi every body
I have system with three ODE function;
y(x)- w(x) + 1/a3 * (diff(w(x),2)+diff(psi(x),1))-B1;
diff(y(x),2)-diff(psi(x),1)-1/a4*(diff(psi(x),3)- a1*a2*(diff(w(x),1)-psi(x)))-B2;
a5*y(x)- a6*diff(y(x),2)- a3*(y(x)-w(x))-B1;
where w, psi and y are function of x as
w(x)=-0.0129*-0.717239*(1.20452*cos(4.81173*x) + cosh(4.29383*x)-1.09043*sin(4.81173*x)-0.973063*sinh(4.29383*x));
psi(x)=-0.0109*-0.717239*(-4.27532*cos(4.81173*x) - 5.1497*cosh(4.29383*x) - 4.72264*sin(4.81173*x) + 5.29226*sinh(4.29383*x));
I want to find y(x) considering three ODE function and below parameters
k=5/6;
L=1;%Length(m)
AA=0.01^2;%Square cross section with side 1cm
II=0.01^4/12;
G=80e9;%pa
Gs=60e9;%pa
EE=200e9;%pa
Kw=.25e6;%pa
Kp=.25e6;%pa
Ks=5e6;%pa
p=8e6;%kg/m^3
Pm=150; %pa/m^2
Pp=15; %pa/m
T=sqrt((p/(k*G))*L);%char time
a1=k*G/EE;
a2=AA*L^2/II;
a3=Kw*L^2/(k*AA*G);
a4=Kp*L/(EE*II);
a5= Ks*L^2/(k*AA*G);
a6= Gs*L^2/(k*AA*G);
B1 = Pm/(k*AA*G);
B2 = Pp/(EE*II);
I appreciate your idea and comments in advance,
0 Comments
Answers (0)
This question is closed.
See Also
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!