Estimate Geometric Transformation
Estimate geometric transformation from matching point pairs
Libraries:
Computer Vision Toolbox /
Geometric Transformations
Description
Use the Estimate Geometric Transformation block to find the transformation matrix which maps the greatest number of point pairs between two images. A point pair refers to a point in the input image and its related point on the image created using the transformation matrix. You can select to use the RANdom SAmple Consensus (RANSAC) or the Least Median Squares algorithm to exclude outliers and to calculate the transformation matrix. You can also use all input points to calculate the transformation matrix.
Examples
Calculate transformation matrix from largest group of point pairs
Examples of input data and application of the Estimate Geometric Transformation block appear in the following figures. Figures (a) and (b) show the point pairs. The points are denoted by stars or circles, and the numbers following them show how they are paired. Some point pairs can be mapped by the same transformation matrix. Other point pairs require a different transformation matrix. One matrix exists that maps the largest number of point pairs, the block calculates and returns this matrix. The block finds the point pairs in the largest group and uses them to calculate the transformation matrix. The point pairs connected by the magenta lines are the largest group.
The transformation matrix can then be used to stitch the images as shown in Figure (e).
Extended Examples
Ports
Input
Pts1 — Point coordinates
Mby2 matrix
Point coordinates, specified as an Mby2 matrix of onebased [x y] point coordinates, where M represents the number of points.
The block outputs the same data type for the transformation matrix as the Pts1 and Pts2 image points.
Data Types: single
 double
 int8
 int16
 int32
 uint8
 uint16
 uint32
Pts2 — Point coordinates
Mby2 matrix
Point coordinates, specified as an Mby2 matrix of onebased [x y] point coordinates, where M represents the number of points.
The block outputs the same data type for the transformation matrix as the Pts1 and Pts2 image points.
Data Types: single
 double
 int8
 int16
 int32
 uint8
 uint16
 uint32
Num — Number of valid points
scalar
Number of valid points to find in Pts1 and Pts2, specified as a scalar. This port appears when you enable the Allow variablesize signal input parameter.
Data Types: int8
 int16
 int32
 uint8
 uint16
 uint32
Output
TForm — Transformation
3by2 matrix  3by3 matrix
Transformation, returned as either a 3by2 or a 3by3 matrix. The block outputs the same data type for the transformation matrix as the Pts1 and Pts2 image points.
Dependencies
When Pts1 and Pts2 are single or double, the output transformation matrix will also have single or double data type.
When Pts1 and Pts2 images are builtin integers, the option is available to set the transformation matrix data type to either
Single
orDouble
.
Data Types: single
 double
Inlier — Points used
Mby1 vector
Points used to calculate TForm
, returned as an
Mby1 vector.
Dependencies
The Inlier port appears when you enable the Output Boolean signal indicating which point pairs are inliers parameter.
Data Types: Boolean
Parameters
Transformation type — Transformation type
Affine
(default)  Nonreflective similarity
 Projective
Specify the transformation type as either Nonreflective
similarity
, Affine
, or
Projective
. See Transformations for a
more detailed discussion.
Dependencies
You can set additional parameters depending on the transformation type:
For
Projective
transformation, you can specify a scalar algebraic distance threshold for determining inliers.For
Affine
orNonreflective similarity
transformation, you can specify the distance threshold for determining inliers in pixels.
Find and exclude outliers — Find and exclude outliers
on (default)  off
Enable to find and exclude outliers from the input points and use only the inlier points to calculate the transformation matrix. When you turn this parameter off, all input points are used to calculate the transformation matrix.
Method — Method to find outliers
RANdom SAmple Consensus (RANSAC)
(default)  Least Median of Squares
Select the method to find outliers as either RANdom SAmple Consensus
(RANSAC)
or Least Median of Squares
See RANSAC and Least Median Squares Algorithms for a more detailed
discussion.
Dependencies
This parameter appears when you enable the Find and exclude outliers check box.
Algebraic distance threshold for determining inliers — Algebraic distance threshold for determining inliers
1.5 (default)  scalar
Specify a scalar threshold value for determining inliers. The threshold controls the upper limit used to find the algebraic distance in the RANSAC algorithm.
Dependencies
This parameter appears when you set the Method parameter to
Random Sample Consensus (RANSAC)
and the
Transformation type parameter to
Projective
.
Distance threshold for determining inliers (in pixels) — Distance threshold for determining inliers (in pixels)
1.5
(default)  scalar
Specify the upper limit distance a point can differ from the projection location of its corresponding point.
Dependencies
This parameter appears when you set the Method parameter to
Random Sample Consensus (RANSAC)
and you set the value of
the Transformation type parameter to Nonreflective
similarity
or Affine
.
Determine number of random samplings using — Determine number of random samplings using
Specified value
(default)  Desired confidence
Select Specified value
to enter a positive integer value
for the number of random samplings. Select Desired
confidence
to set the number of random samplings as a percentage and a
maximum number.
Dependencies
This parameter appears when you select the Find and exclude
outliers check box, and you set the value of the
Method parameter to Random Sample Consensus
(RANSAC)
.
Number of random samplings — Number of random samplings
500
(default)  scalar
Specify the number of random samplings for the algorithm to perform.
Dependencies
This parameter appears when you set the value of the Determine number of
random samplings using parameter to Specified
value
.
Desired confidence (in %) — Desired confidence (in %)
99
(default)  scalar
Specify a percent desired confidence by entering a number between
0
and 100
. The value represents the probability
of the algorithm to find the largest group of points that can be mapped by a
transformation matrix.
Dependencies
This parameter appears when you set the Determine number of random
samplings using parameter to Desired
confidence
.
Maximum number of random samplings — Maximum number of random samplings
1000
(default)  integer
Specify an integer number for the maximum number of random samplings.
Dependencies
This parameter appears when you set the Method parameter to
Random Sample Consensus (RANSAC)
and you set the value of
the Determine number of random samplings using parameter to
Desired confidence
.
Stop sampling earlier when a specified percentage of point pairs are determined to be inlier — Stop sampling
off (default)  on
Enable this parameter to stop random sampling when a percentage of input points have been found as inliers.
Dependencies
This parameter appears when you set the Method parameter to
Random Sample Consensus (RANSAC)
.
Perform additional iterative refinement of the transformation matrix — Perform additional iterative refinement
off (default)  on
Specify whether to perform refinement on the transformation matrix.
Dependencies
This parameter appears when you select Find and exclude outliers check box.
Output Boolean signal indicating which point pairs are inliers — Output Boolean signal
off (default)  on
Enable this parameter to output the inlier point pairs that were used to calculate the transformation matrix.
Dependencies
This parameter appears when you select the Find and exclude outliers check box.
The block will not use this parameter with signed or double, data type points.
When Pts1 and Pts2 are builtin integers, set transformation matrix date type to — Set transformation matrix date type
Single
(default)  Double
Specify transformation matrix data type as Single
or
Double
when the input points are builtin integers.
Dependencies
The block will not use this parameter with signed or double, data type points.
Allow variablesized signal input — Allow variablesized signal input
on (default)  off
Enable this parameter to allow variablesized signal input.
Dependencies
Block Characteristics
Data Types 

Multidimensional Signals 

VariableSize Signals 

^{a} Generated code will be restricted to MATLAB host computers when you set the FFT implementation parameter to FFTW, or when the transform length is not a power of two. 
Tips
The success of estimating the correct geometric transformation depends heavily on the
quality of the input point pairs. If you chose the RANSAC or LMS algorithm, the block will
randomly select point pairs to compute the transformation matrix and will use the
transformation that best fits the input points. There is a chance that all of the randomly
selected point pairs may contain outliers despite repeated samplings. In this case, the output
transformation matrix, TForm
, is invalid, indicated by a
matrix of zeros.
To improve your results, try the following:
Increase the percentage of inliers in the input points. 
Increase the number for random samplings. 
For the RANSAC method, increase the desired confidence. 
For the LMS method, make sure the input points have 50% or more inliers. 
Use features appropriate for the image contents 
Be aware that repeated patterns, for example, windows in office building, will cause false matches when you match the features. This increases the number of outliers. 
Do not use this function if the images have significant parallax. You can use the
estimateFundamentalMatrix function
instead. 
Choose the minimum transformation for your problem. 
If a projective transformation produces the error message, “A portion of the input image was transformed to the location at infinity. Only transformation matrices that do not transform any part of the image to infinity are supported.”, it is usually caused by a transformation matrix and an image that would result in an output distortion that does not fit physical reality. If the matrix was an output of the Estimate Geometric Transformation block, then most likely it could not find enough inliers. 
Algorithms
RANSAC and Least Median Squares Algorithms
The RANSAC algorithm relies on a distance threshold. A pair of points, $${p}_{i}^{a}$$(image a, Pts1) and $${p}_{i}^{b}$$(image b, Pts2) is an inlier only when the distance between $${p}_{i}^{b}$$ and the projection of $${p}_{i}^{a}$$based on the transformation matrix falls within the specified threshold. The distance metric used in the RANSAC algorithm is as follows:
$$d={\displaystyle \sum _{i=1}^{Num}\mathrm{min}(D({p}_{i}^{b},}\psi ({p}_{i}^{a}:H)),t)$$
The Least Median Squares algorithm assumes at least 50% of the point pairs can be mapped by a transformation matrix. The algorithm does not need to explicitly specify the distance threshold. Instead, it uses the median distance between all input point pairs. The distance metric used in the Least Median of Squares algorithm is as follows:
$$d=median(D({p}_{1}^{b},\psi ({p}_{1}^{a}:H)),D({p}_{2}^{b},\psi ({p}_{2}^{a}:H)),\mathrm{...},D({p}_{Num}^{b},\psi ({p}_{N}^{a}:H)))$$
For both equations:
$${p}_{i}^{a}$$ is a point in image a
(Pts1
)
$${p}_{i}^{b}$$ is a point in image b
(Pts2
)
$$\psi ({p}_{i}^{a}:H)$$ is the projection of a point on image a based on transformation matrix H
$$D({p}_{i}^{b},{p}_{j}^{b})$$ is the distance between two point pairs on image b
$$t$$ is the threshold
$$Num$$is the number of points
The smaller the distance metric, the better the transformation matrix and therefore the more accurate the projection image.
Transformations
The Estimate Geometric Transformation block supports Nonreflective
similarity
, Affine
, and
Projective
transformation types, which are described in this
section.
Nonreflective similarity transformation supports translation, rotation, and isotropic scaling. It has four degrees of freedom and requires two pairs of points.
The transformation matrix is: $$H=\left[\begin{array}{cc}{h}_{1}& {h}_{2}\\ {h}_{2}& {h}_{1}\\ {h}_{3}& {h}_{4}\end{array}\right]$$
The projection of a point $${\left[\begin{array}{cc}x& y\end{array}\right]}^{}$$ by $$H$$is: $${\left[\begin{array}{cc}\widehat{x}& \widehat{y}\end{array}\right]}^{}=\left[\begin{array}{ccc}x& y& 1\end{array}\right]H$$
affine transformation supports anisotropic scaling in addition to all transformations that the nonreflective similarity transformation supports. It has six degrees of freedom that can be determined from three pairs of noncollinear points.
The transformation matrix is: $$H=\left[\begin{array}{cc}{h}_{1}& {h}_{4}\\ {h}_{2}& {h}_{5}\\ {h}_{3}& {h}_{6}\end{array}\right]$$
The projection of a point $${\left[\begin{array}{cc}x& y\end{array}\right]}^{}$$ by $$H$$is: $${\left[\begin{array}{cc}\widehat{x}& \widehat{y}\end{array}\right]}^{}=\left[\begin{array}{ccc}x& y& 1\end{array}\right]H$$
Projective transformation supports tilting in addition to all transformations that the affine transformation supports.
The transformation matrix is : $$h=\left[\begin{array}{ccc}{h}_{1}& {h}_{4}& {h}_{7}\\ {h}_{2}& {h}_{5}& {h}_{8}\\ {h}_{3}& {h}_{6}& {h}_{9}\end{array}\right]$$
The projection of a point $${\left[\begin{array}{cc}x& y\end{array}\right]}^{}$$ by $$H$$is represented by homogeneous coordinates as: $${\left[\begin{array}{ccc}\widehat{u}& \widehat{v}& \widehat{w}\end{array}\right]}^{}=\left[\begin{array}{ccc}x& y& 1\end{array}\right]H$$
Distance Measurement
For computational simplicity and efficiency, this block uses algebraic distance. The algebraic distance for a pair of points, $${\left[\begin{array}{cc}{x}^{a}& {y}^{a}\end{array}\right]}^{T}$$ on image a, and $$\left[\begin{array}{cc}{x}^{b}& {y}^{b}\end{array}\right]$$ on image b , according to transformation $$H,$$is defined as follows;
For projective transformation:
$$D({p}_{i}^{b},\psi ({p}_{i}^{a}:H))={({({\widehat{u}}^{a}{\widehat{w}}^{a}{x}^{b})}^{2}+{({\widehat{v}}^{a}{\widehat{w}}^{a}{y}^{b})}^{2})}^{\frac{1}{2}}$$, where $$\left[\begin{array}{ccc}{\widehat{u}}^{a}& {\widehat{v}}^{a}& {\widehat{w}}^{a}\end{array}\right]=\left[\begin{array}{ccc}{x}^{a}& {y}^{a}& 1\end{array}\right]H$$
For Nonreflective similarity or affine transformation: $$D({p}_{i}^{b},\psi ({p}_{i}^{a}:H))={({({\widehat{x}}^{a}{x}^{b})}^{2}+{({\widehat{y}}^{a}{\widehat{y}}^{b})}^{2})}^{\frac{1}{2}}$$,
where $${\left[\begin{array}{cc}{\widehat{x}}^{a}& {\widehat{y}}^{a}\end{array}\right]}^{}=\left[\begin{array}{ccc}{x}^{a}& {y}^{a}& 1\end{array}\right]H$$
The block performs a comparison and repeats it K number of times between successive transformation matrices. If you select the Find and exclude outliers option, the RANSAC and Least Median Squares (LMS) algorithms become available. These algorithms calculate and compare a distance metric. The transformation matrix that produces the smaller distance metric becomes the new transformation matrix that the next comparison uses. A final transformation matrix is resolved when either:
K number of random samplings is performed
The RANSAC algorithm, when enough number of inlier point pairs can be mapped, (dynamically updating K)
The Estimate Geometric Transformation algorithm follows these steps:
A transformation matrix $$H$$ is initialized to zeros
Set
count = 0
(Randomly sampling).While
count < K
, whereK
is total number of random samplings to perform, perform the following;Increment the count;
count = count + 1
.Randomly select pair of points from images a and b, (2 pairs for Nonreflective similarity, 3 pairs for affine, or 4 pairs for projective).
Calculate a transformation matrix $$H$$, from the selected points.
If $$H$$has a distance metric less than that of $$H$$, then replace $$H$$ with $$H$$.
(Optional for RANSAC algorithm only)
Update
K
dynamically.Exit out of sampling loop if enough number of point pairs can be mapped by $$H$$.
Use all point pairs in images a and b that can be mapped by $$H$$ to calculate a refined transformation matrix $$H$$
Iterative Refinement, (Optional for RANSAC and LMS algorithms)
Denote all point pairs that can be mapped by $$H$$ as inliers.
Use inlier point pairs to calculate a transformation matrix $$H$$.
If $$H$$has a distance metric less than that of $$H$$, then replace $$H$$ with $$H$$, otherwise exit the loop.
Number of Random Samplings
The number of random samplings can be specified by the user for the RANSAC and Least Median Squares algorithms. You can use an additional option with the RANSAC algorithm, which calculates this number based on an accuracy requirement. The Desired Confidence level drives the accuracy.
The calculated number of random samplings, K used with the RANSAC algorithm, is as follows:
$$K={\scriptscriptstyle \frac{\mathrm{log}(1p)}{\mathrm{log}(1{q}^{s})}}$$
where
p is the probability of independent point pairs belonging to the largest group that can be mapped by the same transformation. The probability is dynamically calculated based on the number of inliers found versus the total number of points. As the probability increases, the number of samplings, K, decreases.
q is the probability of finding the largest group that can be mapped by the same transformation.
s is equal to the value 2, 3, or 4 for Nonreflective similarity, affine, and projective transformation, respectively.
Iterative Refinement of Transformation Matrix
The transformation matrix calculated from all inliers can be used to calculate a refined transformation matrix. The refined transformation matrix is then used to find a new set of inliers. This procedure can be repeated until the transformation matrix cannot be further improved. This iterative refinement is optional.
References
[1] R. Hartley and A. Ziserman, “Multiple View Geometry in Computer Vision,” Second edition, Cambridge University Press, 2003
Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.
FixedPoint Conversion
Design and simulate fixedpoint systems using FixedPoint Designer™.
Version History
Introduced in R2008a
See Also
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list:
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
 América Latina (Español)
 Canada (English)
 United States (English)
Europe
 Belgium (English)
 Denmark (English)
 Deutschland (Deutsch)
 España (Español)
 Finland (English)
 France (Français)
 Ireland (English)
 Italia (Italiano)
 Luxembourg (English)
 Netherlands (English)
 Norway (English)
 Österreich (Deutsch)
 Portugal (English)
 Sweden (English)
 Switzerland
 United Kingdom (English)