iztrans
Inverse Z-transform
Description
iztrans( returns the Inverse Z-Transform of
                    F)F. By default, the independent variable is
                    z and the transformation variable is n. If
                    F does not contain z,
                    iztrans uses the function symvar.
Examples
Inverse Z-Transform of Symbolic Expression
Compute the inverse Z-transform of
                        2*z/(z-2)^2. By default, the inverse transform is in
                    terms of n.
syms z F = 2*z/(z-2)^2; iztrans(F)
ans = 2^n + 2^n*(n - 1)
Specify Independent Variable and Transformation Variable
Compute the inverse Z-transform of
                    1/(a*z). By default, the independent and transformation
                    variables are z and n,
                    respectively.
syms z a F = 1/(a*z); iztrans(F)
ans = kroneckerDelta(n - 1, 0)/a
Specify the transformation variable as m. If you
                        specify only one variable, that variable is the transformation variable. The
                        independent variable is still z.
syms m iztrans(F,m)
ans = kroneckerDelta(m - 1, 0)/a
Specify both the independent and transformation variables as
                            a and m in the second and third
                        arguments, respectively.
iztrans(F,a,m)
ans = kroneckerDelta(m - 1, 0)/z
Inverse Z-Transforms Involving Kronecker Delta Function
Compute the inverse Z-transforms of these expressions. The results involve the Kronecker Delta function.
syms n z iztrans(1/z,z,n)
ans = kroneckerDelta(n - 1, 0)
f = (z^3 + 3*z^2)/z^5; iztrans(f,z,n)
ans = kroneckerDelta(n - 2, 0) + 3*kroneckerDelta(n - 3, 0)
Inverse Z-Transform of Array Inputs
Find the inverse Z-transform of the matrix
                        M. Specify the independent and transformation variables
                    for each matrix entry by using matrices of the same size. When the arguments are
                    nonscalars, iztrans acts on them element-wise.
syms a b c d w x y z M = [exp(x) 1; sin(y) i*z]; vars = [w x; y z]; transVars = [a b; c d]; iztrans(M,vars,transVars)
ans = [ exp(x)*kroneckerDelta(a, 0), kroneckerDelta(b, 0)] [ iztrans(sin(y), y, c), iztrans(z, z, d)*1i]
If iztrans is called with both scalar and nonscalar
                arguments, then it expands the scalars to match the nonscalars by using scalar
                expansion. Nonscalar arguments must be the same size.
syms w x y z a b c d iztrans(x,vars,transVars)
ans = [ x*kroneckerDelta(a, 0), iztrans(x, x, b)] [ x*kroneckerDelta(c, 0), x*kroneckerDelta(d, 0)]
Inverse Z-Transform of Symbolic Function
Compute the Inverse Z-transform of symbolic functions. When the first argument contains symbolic functions, then the second argument must be a scalar.
syms f1(x) f2(x) a b f1(x) = exp(x); f2(x) = x; iztrans([f1, f2],x,[a, b])
ans = [ iztrans(exp(x), x, a), iztrans(x, x, b)]
If Inverse Z-Transform Cannot Be Found
If iztrans cannot compute the inverse
                    transform, it returns an unevaluated call.
syms F(z) n F(z) = exp(z); f = iztrans(F,z,n)
f = iztrans(exp(z), z, n)
Return the original expression by using ztrans.
ztrans(f,n,z)
ans = exp(z)
Input Arguments
More About
Tips
If any argument is an array, then
iztransacts element-wise on all elements of the array.If the first argument contains a symbolic function, then the second argument must be a scalar.
To compute the direct Z-transform, use
ztrans.
Version History
Introduced before R2006a