cosh
Symbolic hyperbolic cosine function
Syntax
Description
Examples
Hyperbolic Cosine Function for Numeric and Symbolic Arguments
Depending on its arguments, cosh returns
floating-point or exact symbolic results.
Compute the hyperbolic cosine function for these numbers. Because these numbers
are not symbolic objects, cosh returns floating-point
results.
A = cosh([-2, -pi*i, pi*i/6, 5*pi*i/7, 3*pi*i/2])
A =
3.7622 -1.0000 0.8660 -0.6235 -0.0000Compute the hyperbolic cosine function for the numbers converted to symbolic
objects. For many symbolic (exact) numbers, cosh returns
unresolved symbolic calls.
symA = cosh(sym([-2, -pi*i, pi*i/6, 5*pi*i/7, 3*pi*i/2]))
symA = [ cosh(2), -1, 3^(1/2)/2, -cosh((pi*2i)/7), 0]
Use vpa to approximate symbolic results with floating-point
numbers:
vpa(symA)
ans = [ 3.7621956910836314595622134777737,... -1.0,... 0.86602540378443864676372317075294,... -0.62348980185873353052500488400424,... 0]
Plot Hyperbolic Cosine Function
Plot the hyperbolic cosine function on the interval from to .
syms x fplot(cosh(x),[-pi pi]) grid on

Handle Expressions Containing Hyperbolic Cosine Function
Many functions, such as diff,
int, taylor, and
rewrite, can handle expressions containing
cosh.
Find the first and second derivatives of the hyperbolic cosine function:
syms x diff(cosh(x), x) diff(cosh(x), x, x)
ans = sinh(x) ans = cosh(x)
Find the indefinite integral of the hyperbolic cosine function:
int(cosh(x), x)
ans = sinh(x)
Find the Taylor series expansion of cosh(x):
taylor(cosh(x), x)
ans = x^4/24 + x^2/2 + 1
Rewrite the hyperbolic cosine function in terms of the exponential function:
rewrite(cosh(x), 'exp')
ans = exp(-x)/2 + exp(x)/2
Input Arguments
Version History
Introduced before R2006a