fit
Syntax
Description
fitResults = fit(problemObject)problemObject and returns the fitted results.
[
        also returns simulation data fitResults,simdataI] = fit(problemObject)simdataI using the estimated parameter
        values. If problemObject.FitFunction is
        "sbiofitmixed", simulations use the individual parameter
        estimates.
[
        also returns simulation results using population parameter estimates. This syntax is
        supported only when fitResults,simdataI,simdataP] = fit(problemObject)problemObject.FitFunction is
          "sbiofitmixed".
Examples
This example shows how to estimate PK parameters of a SimBiology® model using a problem-based approach.
Load a synthetic data set. It contains drug plasma concentration data measured in both central and peripheral compartments.
load('data10_32R.mat')Convert the data set to a groupedData object.
gData = groupedData(data); gData.Properties.VariableUnits = ["","hour","milligram/liter","milligram/liter"];
Display the data.
sbiotrellis(gData,"ID","Time",["CentralConc","PeripheralConc"],... Marker="+",LineStyle="none");

Use the built-in PK library to construct a two-compartment model with infusion dosing and first-order elimination. Use the configset object to turn on unit conversion.
pkmd = PKModelDesign; pkc1 = addCompartment(pkmd,"Central"); pkc1.DosingType = "Infusion"; pkc1.EliminationType = "linear-clearance"; pkc1.HasResponseVariable = true; pkc2 = addCompartment(pkmd,"Peripheral"); model2cpt = construct(pkmd); configset = getconfigset(model2cpt); configset.CompileOptions.UnitConversion = true;
Assume every individual receives an infusion dose at time = 0, with a total infusion amount of 100 mg at a rate of 50 mg/hour. For details on setting up different dosing strategies, see Doses in SimBiology Models.
dose = sbiodose("dose","TargetName","Drug_Central"); dose.StartTime = 0; dose.Amount = 100; dose.Rate = 50; dose.AmountUnits = "milligram"; dose.TimeUnits = "hour"; dose.RateUnits = "milligram/hour";
Create a problem object.
problem = fitproblem
problem = 
  fitproblem with properties:
   Required:
                   Data: [0×0 groupedData]
              Estimated: [1×0 estimatedInfo]
            FitFunction: "sbiofit"
                  Model: [0×0 SimBiology.Model]
            ResponseMap: [1×0 string]
   Optional:
                  Doses: [0×0 SimBiology.Dose]
           FunctionName: "auto"
                Options: []
           ProgressPlot: 0
            UseParallel: 0
               Variants: [0×0 SimBiology.Variant]
             ErrorModel: "constant"
   sbiofit options:
                 Pooled: "auto"
    SensitivityAnalysis: "auto"
                Weights: []
Define the required properties of the object.
problem.Data = gData; problem.Estimated = estimatedInfo(["log(Central)","log(Peripheral)","Q12","Cl_Central"],InitialValue=[1 1 1 1]); problem.Model = model2cpt; problem.ResponseMap = ["Drug_Central = CentralConc","Drug_Peripheral = PeripheralConc"];
Define the dose to be applied during fitting.
problem.Doses = dose;
Show the progress of the estimation.
problem.ProgressPlot = true;
Fit the model to all of the data pooled together: that is, estimate one set of parameters for all individuals by setting the Pooled property to true.
problem.Pooled = true;
Perform the estimation using the fit function of the object.
pooledFit = fit(problem);

Display the estimated parameter values.
pooledFit.ParameterEstimates
ans=4×3 table
         Name         Estimate    StandardError
    ______________    ________    _____________
    {'Central'   }     1.6627        0.16569   
    {'Peripheral'}     2.6864         1.0644   
    {'Q12'       }    0.44945        0.19943   
    {'Cl_Central'}    0.78497       0.095621   
Plot the fitted results.
plot(pooledFit);

Estimate one set of parameters for each individual and see if the parameter estimates improve.
problem.Pooled = false; unpooledFit = fit(problem);

Display the estimated parameter values.
unpooledFit.ParameterEstimates
ans=4×3 table
         Name         Estimate    StandardError
    ______________    ________    _____________
    {'Central'   }      1.422        0.12334   
    {'Peripheral'}     1.5619        0.36355   
    {'Q12'       }    0.47163        0.15196   
    {'Cl_Central'}     0.5291       0.036978   
ans=4×3 table
         Name         Estimate    StandardError
    ______________    ________    _____________
    {'Central'   }     1.8322       0.019672   
    {'Peripheral'}     5.3364        0.65327   
    {'Q12'       }     0.2764       0.030799   
    {'Cl_Central'}    0.86035       0.026257   
ans=4×3 table
         Name         Estimate    StandardError
    ______________    ________    _____________
    {'Central'   }     1.6657       0.038529   
    {'Peripheral'}     5.5632        0.37063   
    {'Q12'       }    0.78361       0.058657   
    {'Cl_Central'}     1.0233       0.027311   
plot(unpooledFit);

Generate a plot of the residuals over time to compare the pooled and unpooled fit results. The figure indicates unpooled fit residuals are smaller than those of the pooled fit, as expected. In addition to comparing residuals, other rigorous criteria can be used to compare the fitted results.
t = [gData.Time;gData.Time]; res_pooled = vertcat(pooledFit.R); res_pooled = res_pooled(:); res_unpooled = vertcat(unpooledFit.R); res_unpooled = res_unpooled(:); figure; plot(t,res_pooled,"o",MarkerFaceColor="w",markerEdgeColor="b") hold on plot(t,res_unpooled,"o",MarkerFaceColor="b",markerEdgeColor="b") refl = refline(0,0); % A reference line representing a zero residual title("Residuals versus Time"); xlabel("Time"); ylabel("Residuals"); legend(["Pooled","Unpooled"]);

As illustrated, the unpooled fit accounts for variations due to the specific subjects in the study, and, in this case, the model fits better to the data. However, the pooled fit returns population-wide parameters. As an alternative, if you want to estimate population-wide parameters while considering individual variations, you can perform nonlinear mixed-effects (NLME) estimation by setting problem.FitFunction to sbiofitmixed.
problem.FitFunction = "sbiofitmixed";NLMEResults = fit(problem);

Display the estimated parameter values.
NLMEResults.IndividualParameterEstimates
ans=12×3 table
    Group         Name         Estimate
    _____    ______________    ________
      1      {'Central'   }     1.4623 
      1      {'Peripheral'}     1.5306 
      1      {'Q12'       }     0.4587 
      1      {'Cl_Central'}    0.53208 
      2      {'Central'   }      1.783 
      2      {'Peripheral'}     6.6623 
      2      {'Q12'       }     0.3589 
      2      {'Cl_Central'}     0.8039 
      3      {'Central'   }     1.7135 
      3      {'Peripheral'}     4.2844 
      3      {'Q12'       }    0.54895 
      3      {'Cl_Central'}     1.0708 
Plot the fitted results.
plot(NLMEResults);

Plot the conditional weighted residuals (CWRES) and individual weighted residuals (IWRES) of model predicted values.
plotResiduals(NLMEResults,'predictions')
Input Arguments
SimBiology estimation problem, specified as a fitproblem
            object.
Output Arguments
Estimation results, returned as a scalar OptimResults object, NLINResults object, vector of
              OptimResults or NLINResults objects, or scalar
                NLMEResults object.
The returned results object type varies depending on if you used
              problemObject.FitFunction="sbiofit" or
              problemObject.FitFunction="sbiofitmixed".
- If - FitFunction="sbiofit"and- FunctionName="nlinfit", the returned results object type is- NLINResults. For other optimization functions, the returned object type is- OptimResults.
- If - FitFunction="sbiofitmixed", the returned object type is always- NLMEResults.
When you use FitFunction="sbiofit", the function returns either a
            scalar results object or vector of results objects as follows.
For an unpooled fit, the function fits each group separately using group-specific parameters,
        and fitResults is a vector of results objects with one results object
        for each group.
For a pooled fit, the function performs fitting for all individuals or groups simultaneously
        using the same parameter estimates, and fitResults is a scalar results
        object.
When the pooled option is not specified, and CategoryVariableName values of
            estimatedInfo objects are all <none>,
            fitResults is a single results  object. This is the same behavior
        as a pooled fit.
When the pooled option is not specified, and CategoryVariableName values of
            estimatedInfo objects are all
            <GroupVariableName>, fitResults is a
        vector of results objects. This is the same behavior as an unpooled fit.
In all other cases, fitResults is a scalar object containing estimated parameter values for different groups or categories specified by CategoryVariableName.
See the Pooled property for details on how to perform a pooled, unpooled, or category fit.
When you use FitFunction="sbiofitmixed", the function always
            returns a scalar NLMEResults object.
Simulation results, returned as a vector of SimData objects
            representing simulation results for each group (or individual) using individual-specific
            parameter estimates.
 The states reported in simDataI are the states that are
            included in problemObject.ResponseMap as well as any other states
            listed in the StatesToLog property of the runtime
            options (RuntimeOptions) of the SimBiology model
              problemObject.Model.
Simulation results, returned as a vector of SimData objects
            representing simulation results for each group (or individual) using only fixed-effect
            estimates (population parameter estimates).
 The states reported in simDataP are the states that are
            included in problemObject.ResponseMap as well as any other states
            listed in the StatesToLog property of the runtime
            options (RuntimeOptions) of the SimBiology model
              problemObject.Model.
Version History
Introduced in R2021b
See Also
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)