price
Compute price for interest-rate, equity, or credit derivative instrument with
Analytic pricer
Syntax
Description
[
computes the instrument price and related pricing information based on the pricing object
Price,PriceResult] = price(inpPricer,inpInstrument)inpPricer and the instrument object
inpInstrument.
The Analytic pricer supports the following pricer objects:
[
adds an optional argument to specify sensitivities.Price,PriceResult] = price(___,inpSensitivity)
Examples
This example shows the workflow to price a European exercise Spread instrument when you use a BlackScholes model and a BjerksundStensland pricing method.
Create Spread Instrument Object
Use fininstrument to create a Spread instrument object.
SpreadOpt = fininstrument("Spread",'Strike',5,'ExerciseDate',datetime(2021,9,15),'OptionType',"put",'ExerciseStyle',"european",'Name',"spread_option")
SpreadOpt =
Spread with properties:
OptionType: "put"
Strike: 5
ExerciseStyle: "european"
ExerciseDate: 15-Sep-2021
Name: "spread_option"
Create BlackScholes Model Object
Use finmodel to create a BlackScholes model object.
BlackScholesModel = finmodel("BlackScholes",'Volatility',[0.2,0.1])
BlackScholesModel =
BlackScholes with properties:
Volatility: [0.2000 0.1000]
Correlation: [2×2 double]
Create ratecurve Object
Create a flat ratecurve object using ratecurve.
Settle = datetime(2018,9,15); Maturity = datetime(2023,9,15); Rate = 0.035; myRC = ratecurve('zero',Settle,Maturity,Rate,'Basis',12)
myRC =
ratecurve with properties:
Type: "zero"
Compounding: -1
Basis: 12
Dates: 15-Sep-2023
Rates: 0.0350
Settle: 15-Sep-2018
InterpMethod: "linear"
ShortExtrapMethod: "next"
LongExtrapMethod: "previous"
Create BjerksundStensland Pricer Object
Use finpricer to create a BjerksundStensland pricer object and use the ratecurve object for the 'DiscountCurve' name-value pair argument.
outPricer = finpricer("analytic",'Model',BlackScholesModel,'DiscountCurve',myRC,'SpotPrice',[100,105],'DividendValue',[0.09,0.17],'PricingMethod',"BjerksundStensland")
outPricer =
BjerksundStensland with properties:
DiscountCurve: [1×1 ratecurve]
Model: [1×1 finmodel.BlackScholes]
SpotPrice: [100 105]
DividendValue: [0.0900 0.1700]
DividendType: "continuous"
Price Spread Instrument
Use price to compute the price and sensitivities for the Spread instrument.
[Price, outPR] = price(outPricer,SpreadOpt,["all"])Price = 7.0596
outPR =
priceresult with properties:
Results: [1×7 table]
PricerData: []
outPR.Results
ans=1×7 table
Price Delta Gamma Lambda Vega Theta Rho
______ ____________________ ______________________ __________________ ________________ ______ _______
7.0596 -0.23249 0.27057 0.0069887 0.0055319 -3.2932 3.8327 41.938 18.303 1.1011 -5.6943
This example shows the workflow to price the absolute return for three Cliquet instruments when you use a BlackScholes model and a Rubinstein pricing method.
Create ratecurve Object
Create a flat ratecurve object using ratecurve.
Settle = datetime(2018,9,15);
Maturity = datetime(2023,9,15);
Rate = 0.035;
myRC = ratecurve('zero',Settle,Maturity,Rate,Basis=12)myRC =
ratecurve with properties:
Type: "zero"
Compounding: -1
Basis: 12
Dates: 15-Sep-2023
Rates: 0.0350
Settle: 15-Sep-2018
InterpMethod: "linear"
ShortExtrapMethod: "next"
LongExtrapMethod: "previous"
Create Cliquet Instrument Object
Use fininstrument to create a Cliquet instrument object for three Cliquet instruments.
ResetDates = Settle + years(0:0.25:1); CliquetOpt = fininstrument("Cliquet",ResetDates=ResetDates,InitialStrike=[140;150;160],ExerciseStyle="european",Name="cliquet_option")
CliquetOpt=3×1 Cliquet array with properties:
OptionType
ExerciseStyle
ResetDates
LocalCap
LocalFloor
GlobalCap
GlobalFloor
ReturnType
InitialStrike
Name
Create BlackScholes Model Object
Use finmodel to create a BlackScholes model object.
BlackScholesModel = finmodel("BlackScholes",Volatility=0.28)BlackScholesModel =
BlackScholes with properties:
Volatility: 0.2800
Correlation: 1
Create Rubinstein Pricer Object
Use finpricer to create a Rubinstein pricer object and use the ratecurve object for the 'DiscountCurve' name-value pair argument.
outPricer = finpricer("analytic",DiscountCurve=myRC,Model=BlackScholesModel,SpotPrice=135,DividendValue=0.025,PricingMethod="Rubinstein")
outPricer =
Rubinstein with properties:
DiscountCurve: [1×1 ratecurve]
Model: [1×1 finmodel.BlackScholes]
SpotPrice: 135
DividendValue: 0.0250
DividendType: "continuous"
Price Cliquet Instruments
Use price to compute the price and sensitivities for the three Cliquet instruments.
[Price, outPR] = price(outPricer,CliquetOpt,"all")Price = 3×1
28.1905
25.3226
23.8168
outPR=3×1 priceresult array with properties:
Results
PricerData
outPR.Results
ans=1×7 table
Price Delta Gamma Lambda Vega Rho Theta
______ _______ ________ ______ ______ ______ ______
28.191 0.59697 0.020662 2.8588 105.38 60.643 -14.62
ans=1×7 table
Price Delta Gamma Lambda Vega Rho Theta
______ _______ ________ ______ ______ ______ _______
25.323 0.41949 0.016816 2.2364 100.47 55.367 -11.708
ans=1×7 table
Price Delta Gamma Lambda Vega Rho Theta
______ _______ ________ ______ ______ ______ ______
23.817 0.29729 0.011133 1.6851 93.219 51.616 -7.511
This example shows the workflow to price a CMS and CMSNote instrument when you use a CMSConvexityHull model and a CMSConvexityHull pricing method.
Create ratecurve Object
Create a ratecurve object using ratecurve for the underlying interest-rate curve for the CMS instrument.
Settle = datetime(2022,9,15); Type = 'zero'; ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]'; ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]'; ZeroDates = Settle + ZeroTimes; ZeroCurve = ratecurve('zero',Settle,ZeroDates,ZeroRates)
ZeroCurve =
ratecurve with properties:
Type: "zero"
Compounding: -1
Basis: 0
Dates: [10×1 datetime]
Rates: [10×1 double]
Settle: 15-Sep-2022
InterpMethod: "linear"
ShortExtrapMethod: "next"
LongExtrapMethod: "previous"
Create CMS Instrument Object
Use fininstrument to create a CMS instrument object.
CMSInstrument = fininstrument("CMS",Maturity=datetime(2028,9,15),CMSReferenceTenor=10,LegRate=[0 0.01],LegType=["cms" "fixed"],Name="CMS instrument")
CMSInstrument =
CMS with properties:
CMSReferenceReset: 2
CMSReferenceTenor: 10
LegRate: [0 0.0100]
LegType: ["cms" "fixed"]
Reset: [2 2]
Basis: [0 0]
Notional: 100
LatestFloatingRate: [NaN NaN]
LatestCMSRate: NaN
ResetOffset: [0 0]
DaycountAdjustedCashFlow: [0 0]
ProjectionCurve: [0×0 ratecurve]
BusinessDayConvention: ["actual" "actual"]
Holidays: NaT
EndMonthRule: [1 1]
StartDate: NaT
Maturity: 15-Sep-2028
Name: "CMS instrument"
Create CMSNote Instrument Object
Use fininstrument to create a CMSNote instrument object.
CMSNoteInstrument = fininstrument("CMSNote",Maturity=datetime(2028,9,15),CMSReferenceTenor=10,Name="CMSNote instrument")
CMSNoteInstrument =
CMSNote with properties:
CMSReferenceReset: 2
CMSReferenceTenor: 10
Spread: 0
InitialCouponPeriod: 0
InitialCouponRate: 0
Period: 2
Basis: 0
Principal: 100
LatestFloatingRate: NaN
LatestCMSRate: NaN
ResetOffset: 0
DaycountAdjustedCashFlow: 0
ProjectionCurve: [0×0 ratecurve]
BusinessDayConvention: "actual"
Holidays: NaT
EndMonthRule: 1
StartDate: NaT
Maturity: 15-Sep-2028
Name: "CMSNote instrument"
Create CMSConvexityHull Model Object
Use finmodel to create a CMSConvexityHull model object.
SwapStartDates = datetime(2022,3,15) + calmonths(0:6:13*6)'; FwdSwapVolatility = [37.5;38.7;39.3;39.5;39.4;39.3;39.2;... 39;38.8;38.5;38.3;38;37.8;37.7]./100; CMSConvexityHullModel = finmodel("CMSConvexityHull",CMSConvexityData=timetable(SwapStartDates,FwdSwapVolatility))
CMSConvexityHullModel =
CMSConvexityHull with properties:
CMSConvexityData: [14×3 timetable]
CMSConvexityHullModel.CMSConvexityData
ans=14×3 timetable
SwapStartDates FwdSwapVolatility FwdVolatility FwdSwapFwdCorrelation
______________ _________________ _____________ _____________________
15-Mar-2022 0.375 0 0
15-Sep-2022 0.387 0 0
15-Mar-2023 0.393 0 0
15-Sep-2023 0.395 0 0
15-Mar-2024 0.394 0 0
15-Sep-2024 0.393 0 0
15-Mar-2025 0.392 0 0
15-Sep-2025 0.39 0 0
15-Mar-2026 0.388 0 0
15-Sep-2026 0.385 0 0
15-Mar-2027 0.383 0 0
15-Sep-2027 0.38 0 0
15-Mar-2028 0.378 0 0
15-Sep-2028 0.377 0 0
Create CMSConvexityHull Pricer Object
Use finpricer to create a CMSConvexityHull pricer object and use the ratecurve object for the 'DiscountCurve' name-value pair argument.
CMSConvexityHullPricer = finpricer("analytic",Model=CMSConvexityHullModel,DiscountCurve=ZeroCurve)CMSConvexityHullPricer =
CMSConvexityHull with properties:
Model: [1×1 finmodel.CMSConvexityHull]
DiscountCurve: [1×1 ratecurve]
Price CMS and CMSNote Instruments
Use price to compute the price for the CMS and CMSNote instruments.
[CMSPrice, outPR] = price(CMSConvexityHullPricer,CMSInstrument)
CMSPrice = 11.5623
outPR =
priceresult with properties:
Results: [1×1 table]
PricerData: [13×7 timetable]
outPR.PricerData % For the CMS instrumentans=13×7 timetable
Time SwapStartDates ForwardSwapRates ConvexityAdjustments TimingAdjustments CMSRates Accruals SwapEndDates
___________ ______________ ________________ ____________________ _________________ ________ ________ ____________
15-Sep-2022 15-Sep-2022 0.021605 0 0 0.021605 0 15-Sep-2032
15-Mar-2023 15-Sep-2022 0.021605 0 0 0.021605 0.5 15-Sep-2032
15-Sep-2023 15-Mar-2023 0.02286 0.00019992 0 0.02306 0.5 15-Mar-2033
15-Mar-2024 15-Sep-2023 0.024135 0.00045273 0 0.024588 0.5 15-Sep-2033
15-Sep-2024 15-Mar-2024 0.025431 0.00074919 0 0.02618 0.5 15-Mar-2034
15-Mar-2025 15-Sep-2024 0.026751 0.0010992 0 0.02785 0.5 15-Sep-2034
15-Sep-2025 15-Mar-2025 0.02801 0.0014918 0 0.029502 0.5 15-Mar-2035
15-Mar-2026 15-Sep-2025 0.029262 0.0019316 0 0.031194 0.5 15-Sep-2035
15-Sep-2026 15-Mar-2026 0.030318 0.0023865 0 0.032705 0.5 15-Mar-2036
15-Mar-2027 15-Sep-2026 0.0313 0.0028593 0 0.03416 0.5 15-Sep-2036
15-Sep-2027 15-Mar-2027 0.032102 0.003331 0 0.035433 0.5 15-Mar-2037
15-Mar-2028 15-Sep-2027 0.032798 0.0038007 0 0.036599 0.5 15-Sep-2037
15-Sep-2028 15-Mar-2028 0.033406 0.0042947 0 0.0377 0.5 15-Mar-2038
[CMSNotePrice, outPR] = price(CMSConvexityHullPricer,CMSNoteInstrument)
CMSNotePrice = 109.1087
outPR =
priceresult with properties:
Results: [1×1 table]
PricerData: [13×7 timetable]
outPR.PricerData % For the CMS Note instrumentans=13×7 timetable
Time SwapStartDates ForwardSwapRates ConvexityAdjustments TimingAdjustments CMSRates Accruals SwapEndDates
___________ ______________ ________________ ____________________ _________________ ________ ________ ____________
15-Sep-2022 15-Sep-2022 0.021605 0 0 0.021605 0 15-Sep-2032
15-Mar-2023 15-Sep-2022 0.021605 0 0 0.021605 0.5 15-Sep-2032
15-Sep-2023 15-Mar-2023 0.02286 0.00019992 0 0.02306 0.5 15-Mar-2033
15-Mar-2024 15-Sep-2023 0.024135 0.00045273 0 0.024588 0.5 15-Sep-2033
15-Sep-2024 15-Mar-2024 0.025431 0.00074919 0 0.02618 0.5 15-Mar-2034
15-Mar-2025 15-Sep-2024 0.026751 0.0010992 0 0.02785 0.5 15-Sep-2034
15-Sep-2025 15-Mar-2025 0.02801 0.0014918 0 0.029502 0.5 15-Mar-2035
15-Mar-2026 15-Sep-2025 0.029262 0.0019316 0 0.031194 0.5 15-Sep-2035
15-Sep-2026 15-Mar-2026 0.030318 0.0023865 0 0.032705 0.5 15-Mar-2036
15-Mar-2027 15-Sep-2026 0.0313 0.0028593 0 0.03416 0.5 15-Sep-2036
15-Sep-2027 15-Mar-2027 0.032102 0.003331 0 0.035433 0.5 15-Mar-2037
15-Mar-2028 15-Sep-2027 0.032798 0.0038007 0 0.036599 0.5 15-Sep-2037
15-Sep-2028 15-Mar-2028 0.033406 0.0042947 0 0.0377 0.5 15-Mar-2038
Input Arguments
Pricer object (previously created using finpricer), specified as a
scalar. The supported pricer objects are:
Data Types: object
Instrument object (previously created using fininstrument), specified as
a scalar or a vector.
The supported instrument objects using a scalar or vector are:
The supported instrument object using a scalar is:
Data Types: object
(Optional) List of sensitivities to compute, specified as a
NOUT-by-1 or a
1-by-NOUT cell array of character vectors or
string array.
The supported sensitivities depend on the pricing method.
inpPricer Object | Supported Sensitivities |
|---|---|
BjerksundStensland | {'delta','gamma','vega',
'theta','rho','price','lambda'} |
IkedaKunitomo | {'delta','gamma','vega','theta','rho','price','lambda'} |
Black | 'price' |
CMSConvexityHull | 'price' |
BlackScholes | {'delta','gamma','vega','theta','rho','price','lambda'} |
CDSBlack | 'price' |
ConzeViswanathan | {'delta','gamma','vega','theta','rho','price','lambda}' |
GoldmanSosinGatto | {'delta','gamma','vega','theta','rho','price','lambda}' |
HeynenKat | {'delta','gamma','vega','theta','rho','price','lambda}' |
HullWhite | 'price' |
Heston | 'price' |
KemnaVorst | {'delta','gamma','vega','theta','rho','price','lambda'} |
Kirk | {'delta','gamma','vega','theta','rho','price','lambda'} |
Levy | {'delta','gamma','vega','theta','rho','price','lambda'} |
Normal | 'price' |
RollGeskeWhaley | {'delta','gamma','vega','theta','rho','price','lambda'} |
Rubinstein | {'delta','gamma','vega','theta','rho','price','lambda'} |
SABR | 'price' |
TurnbullWakeman | {'delta','gamma','vega','theta','rho','price',} |
JarrowYildirim | 'price' |
inpSensitivity = {'All'} or inpSensitivity =
["All"] specifies that all sensitivities for the pricing method are
returned. This is the same as specifying inpSensitivity to include
each sensitivity.
Example: inpSensitivity =
["delta","gamma","vega","lambda","rho","theta","price"]
Data Types: cell | string
Output Arguments
Instrument price, returned as a numeric.
Price result, returned as a PriceResult object. The object has
the following fields:
PriceResult.Results— Table of results that includes sensitivities (if you specifyinpSensitivity)PriceResult.PricerData— Structure for pricer dataNote
When pricing a
VarianceSwap,PriceResult.FairVarianceis returned.
Note
The inpPricer options that do not support sensitivities do
not return a PriceResult. For example, there is no
PriceResult returned for when using a Black,
CDSBlack, HullWhite,
Normal, Heston, SABR, or
JarrowYildirim pricing method.
More About
A delta sensitivity measures the rate at which the price of an option is expected to change relative to a $1 change in the price of the underlying asset.
Delta is not a static measure; it changes as the price of the underlying asset changes (a concept known as gamma sensitivity), and as time passes. Options that are near the money or have longer until expiration are more sensitive to changes in delta.
A gamma sensitivity measures the rate of change of an option's delta in response to a change in the price of the underlying asset.
In other words, while delta tells you how much the price of an option might move, gamma tells you how fast the option's delta itself will change as the price of the underlying asset moves. This is important because this helps you understand the convexity of an option's value in relation to the underlying asset's price.
A vega sensitivity measures the sensitivity of an option's price to changes in the volatility of the underlying asset.
Vega represents the amount by which the price of an option would be expected to change for a 1% change in the implied volatility of the underlying asset. Vega is expressed as the amount of money per underlying share that the option's value will gain or lose as volatility rises or falls.
A theta sensitivity measures the rate at which the price of an option decreases as time passes, all else being equal.
Theta is essentially a quantification of time decay, which is a key concept in options pricing. Theta provides an estimate of the dollar amount that an option's price would decrease each day, assuming no movement in the price of the underlying asset and no change in volatility.
A rho sensitivity measures the rate at which the price of an option is expected to change in response to a change in the risk-free interest rate.
Rho is expressed as the amount of money an option's price would gain or lose for a one percentage point (1%) change in the risk-free interest rate.
A lambda sensitivity measures the percentage change in an option's price for a 1% change in the price of the underlying asset.
Lambda is a measure of leverage, indicating how much more sensitive an option is to price movements in the underlying asset compared to owning the asset outright.
Version History
Introduced in R2020aYou can use the price function to calculate the price of a YearYearInflationCap, YearYearInflationFloor, ZeroCouponInflationCap, or ZeroCouponInflationFloor using a JarrowYildirim model object
and a JarrowYildirim
pricing method.
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)