mvnrstd
Evaluate standard errors for multivariate normal regression model
Syntax
Description
[
evaluates standard errors for a multivariate normal regression model without missing
data. The model has the formStdParameters
,StdCovariance
] = mvnrstd(Data
,Design
,Covariance
)
for samples k = 1, ... ,
NUMSAMPLES
.
mvnrstd
computes two outputs:
StdParameters
is aNUMPARAMS
-by-1
column vector of standard errors for each element ofParameters
, the vector of estimated model parameters.StdCovariance
is aNUMSERIES
-by-NUMSERIES
matrix of standard errors for each element ofCovariance
, the matrix of estimated covariance parameters.Note
mvnrstd
operates slowly when you calculate the standard errors associated with the covariance matrixCovariance
.
[
computes the log-likelihood function based on current maximum likelihood parameter
estimates without missing data using an optional argument.StdParameters
,StdCovariance
] = mvnrstd(___,CovarFormat
)
Input Arguments
Output Arguments
References
[1] Roderick J. A. Little and Donald B. Rubin. Statistical Analysis with Missing Data., 2nd Edition. John Wiley & Sons, Inc., 2002.
Version History
Introduced in R2006a