convert2daily
Description
Examples
Apply separate aggregation methods to related variables in a timetable while maintaining consistency between aggregated results for a daily periodicity. 
Load a timetable (DataTimeTable) of simulated stock price data and corresponding logarithmic returns. The data stored in DataTimeTable is recorded at various times throughout the day on New York Stock Exchange (NYSE) business days from January 1, 2018, to December 31, 2020. The timetable DataTimeTable also includes NYSE business calendar awareness. If your timetable does not account for nonbusiness days (weekends, holidays, and market closures), add business calendar awareness by using addBusinessCalendar first.
load("SimulatedStockSeries.mat","DataTimeTable"); head(DataTimeTable)
            Time            Price     Log_Return
    ____________________    ______    __________
    01-Jan-2018 11:52:48       100     -0.025375
    01-Jan-2018 13:23:13    101.14      0.011336
    01-Jan-2018 14:45:09     101.5     0.0035531
    01-Jan-2018 15:30:30    100.15      -0.01339
    02-Jan-2018 10:43:37     99.72    -0.0043028
    03-Jan-2018 10:02:21    100.11     0.0039033
    03-Jan-2018 11:22:37    103.96      0.037737
    03-Jan-2018 13:42:27    107.05       0.02929
Aggregate prices and logarithmic returns to a daily periodicity. To maintain consistency between prices and returns, for any given trading day, aggregate the prices by reporting the last recorded price by using "lastvalue" and aggregate the returns by summing all logarithmic returns by using "sum".
DTT = convert2daily(DataTimeTable,Aggregation=["lastvalue" "sum"]); head(DTT)
       Time        Price     Log_Return
    ___________    ______    __________
    01-Jan-2018    100.15     -0.023876
    02-Jan-2018     99.72    -0.0043028
    03-Jan-2018    105.57      0.057008
    04-Jan-2018    109.01      0.032065
    05-Jan-2018    110.69      0.015294
    06-Jan-2018    110.48     -0.001899
    07-Jan-2018    113.83      0.029872
    08-Jan-2018    116.41      0.022412
To verify consistency, examine the input and output timetables for January 2 and 3, 2018.
dt = datetime(2018,1,4);
DataTimeTable(DataTimeTable.Time < dt,:)  % Input data through 03-Jan-2018ans=9×2 timetable
            Time            Price     Log_Return
    ____________________    ______    __________
    01-Jan-2018 11:52:48       100     -0.025375
    01-Jan-2018 13:23:13    101.14      0.011336
    01-Jan-2018 14:45:09     101.5     0.0035531
    01-Jan-2018 15:30:30    100.15      -0.01339
    02-Jan-2018 10:43:37     99.72    -0.0043028
    03-Jan-2018 10:02:21    100.11     0.0039033
    03-Jan-2018 11:22:37    103.96      0.037737
    03-Jan-2018 13:42:27    107.05       0.02929
    03-Jan-2018 14:45:20    105.57     -0.013922
DTT(1:3,:)  % Return aggregated resultsans=3×2 timetable
       Time        Price     Log_Return
    ___________    ______    __________
    01-Jan-2018    100.15     -0.023876
    02-Jan-2018     99.72    -0.0043028
    03-Jan-2018    105.57      0.057008
logLastPriceJan2 = log(99.72); logLastPriceJan3 = log(105.57); aggLogRetJan3 = logLastPriceJan3 - logLastPriceJan2
aggLogRetJan3 = 0.0570
For each business day in DTT, notice that the output aggregated price is the last price of the day and that the aggregated return is the sum of all logarithmic returns. Also, the aggregated returns are consistent with aggregated prices. 
For example, the aggregated return for January 3, 2018,  is 0.0570, which is the logarithmic return associated with the last prices recorded on January 2 and 3, 2018.
The dates of the aggregated results are whole dates that indicate the dates for which aggregated results are reported.
Input Arguments
Data to aggregate to a daily periodicity, specified as a timetable.
Each variable can be a numeric vector (univariate series) or numeric matrix (multivariate series).
Note
NaNs indicate missing values.Timestamps must be in ascending or descending order.
By default, all days are business days. If your timetable does not account for nonbusiness
        days (weekends, holidays, and market closures), add business calendar awareness by using
            addBusinessCalendar
        first. For example, the following command adds business calendar logic to include only NYSE
        business
        days.
TT = addBusinessCalendar(TT);
Data Types: timetable
Name-Value Arguments
Specify optional pairs of arguments as
      Name1=Value1,...,NameN=ValueN, where Name is
      the argument name and Value is the corresponding value.
      Name-value arguments must appear after other arguments, but the order of the
      pairs does not matter.
    
Example: TT2 = convert2daily(TT1,'Aggregation',["lastvalue"
                         "sum"])
Intra-day aggregation method for TT1 defining
                                   how data is aggregated over business days, specified as one of
                                   the following methods, a string vector of methods, or a length
                                        numVariables cell vector of methods,
                                   where numVariables is the number of variables
                                   in TT1.
"sum"— Sum the values in each year or day."mean"— Calculate the mean of the values in each year or day."prod"— Calculate the product of the values in each year or day."min"— Calculate the minimum of the values in each year or day."max"— Calculate the maximum of the values in each year or day."firstvalue"— Use the first value in each year or day."lastvalue"— Use the last value in each year or day.@customfcn— A custom aggregation method that accepts a timetable and returns a numeric scalar (for univariate series) or row vector (for multivariate series). The function must accept empty inputs[].
If you specify a single method, convert2daily applies the specified method to all time series in TT1. If you specify a string vector or cell vector aggregation, convert2daily applies aggregation( to j)TT1(:,; j)convert2daily applies each aggregation method one at a time (for more details, see retime). For example, consider a daily timetable
                                   representing TT1 with three variables.
                                   
              Time             AAA       BBB            CCC       
      ____________________    ______    ______    ________________
      01-Jan-2018 09:45:47    100.00    200.00    300.00    400.00
      01-Jan-2018 12:48:09    100.03    200.06    300.09    400.12
      02-Jan-2018 10:27:32    100.07    200.14    300.21    400.28
      02-Jan-2018 12:46:09    100.08    200.16    300.24    400.32
      02-Jan-2018 14:14:13    100.25    200.50    300.75    401.00
      02-Jan-2018 15:52:31    100.19    200.38    300.57    400.76
      03-Jan-2018 09:47:11    100.54    201.08    301.62    402.16
      03-Jan-2018 11:24:23    100.59    201.18    301.77    402.36
      03-Jan-2018 14:41:17    101.40    202.80    304.20    405.60
      03-Jan-2018 16:00:00    101.94    203.88    305.82    407.76
      04-Jan-2018 09:55:51    102.53    205.06    307.59    410.12
      04-Jan-2018 10:07:12    103.35    206.70    310.05    413.40
      04-Jan-2018 14:26:23    103.40    206.80    310.20    413.60
      05-Jan-2018 13:13:12    103.91    207.82    311.73    415.64
      05-Jan-2018 14:57:53    103.89    207.78    311.67    415.56TT2 (where the
                                        'lastvalue' is reported for each day) are
                                   as
                                   follows.        Time         AAA       BBB            CCC       
      ___________    ______    ______    ________________
      01-Jan-2018    100.03    200.06    300.09    400.12
      02-Jan-2018    100.19    200.38    300.57    400.76
      03-Jan-2018    101.94    203.88    305.82    407.76
      04-Jan-2018    103.40    206.80    310.20    413.60
      05-Jan-2018    103.89    207.78    311.67    415.56All methods omit missing data (NaNs) in direct aggregation calculations on each variable. However, for situations in which missing values appear in the first row of TT1, missing values can also appear in the aggregated results TT2. To address missing data, write and specify a custom aggregation method (function handle) that supports missing data.
Data Types: char | string | cell | function_handle
Output Arguments
Daily data, returned as a timetable. The time arrangement of TT1 and TT2 are the same.
If a variable of TT1 has no records for a
                              business day within the sampling time span,
                                   convert2daily returns a NaN
                              for that variable and business day in TT2.
The first date in TT2 is the first business date
                              on or after the first date in TT1. The last date
                              in TT2 is the last business date on or before the
                              last date in TT1.
Version History
Introduced in R2021a
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
 - Canada (English)
 - United States (English)
 
Europe
- Belgium (English)
 - Denmark (English)
 - Deutschland (Deutsch)
 - España (Español)
 - Finland (English)
 - France (Français)
 - Ireland (English)
 - Italia (Italiano)
 - Luxembourg (English)
 
- Netherlands (English)
 - Norway (English)
 - Österreich (Deutsch)
 - Portugal (English)
 - Sweden (English)
 - Switzerland
 - United Kingdom (English)