Add Sensors to RoadRunner Scenario Using MATLAB
Define sensor models in MATLAB®, and add them to vehicle actors in a RoadRunner Scenario. Then, obtain ground truth measurements from RoadRunner Scenario, process them into detections for visualization.
Set Up RoadRunner Scenario — MATLAB Interface
Configure your RoadRunner installation and project folder properties. Open the RoadRunner app.
rrInstallationPath = "C:\Program Files\RoadRunner R2024a\bin\win64"; rrProjectPath = "D:\RR\TestProjects"; s = settings; s.roadrunner.application.InstallationFolder.PersonalValue = rrInstallationPath; rrApp = roadrunner(rrProjectPath);
To open the scenario this example uses, you must add the TrajectoryCutIn-longRun.rrscenario
file from the example folder to your RoadRunner project folder. Then, open the scenario.
copyfile("TrajectoryCutIn-longRun.rrscenario",fullfile(rrProjectPath,"Scenarios/")) openScenario(rrApp,"TrajectoryCutIn-longRun")
Create a ScenarioSimulation
object to connect MATLAB to the RoadRunner Scenario simulation and set the step size.
scenarioSim = createSimulation(rrApp);
Connection status: 1 Connected to RoadRunner Scenario server on localhost:60730, with client id {761e01bc-376c-4b4b-8ffa-aa1490d7438d}
stepSize = 0.1;
set(scenarioSim,"StepSize",stepSize);
Create a SensorSimulation
object to control the sensor configuration for the RoadRunner Scenario simulation.
sensorSim = get(scenarioSim,"SensorSimulation");
To use the GPU on your device for supporting hardware accelerated raytracing, specify the UseGPU
property of the SensorSimulation
object to on
. This enables supported sensors like lidars to use GPU for raytracing.
sensorSim.UseGPU = "on";
If you modify the RoadRunner scene after creating the SensorSimulation
object, you must follow these steps for the changes to reflect correctly in MATLAB:
Save and close RoadRunner application.
Clear the
ScenarioSimulation
object from the MATLAB workspace.Reopen the RoadRunner scenario.
Recreate the
ScenarioSimulation
object and theSensorSimulation
object.
Configure Sensors and Add to RoadRunner Scenario
Configure sensor models for vision, radar and lidar sensors to add to the ego vehicle using visionDetectionGenerator
, drivingRadarDataGenerator
and lidarPointCloudGenerator
objects. Specify unique IDs for each sensor.
visionSensor = visionDetectionGenerator(SensorIndex=1, ... SensorLocation=[2.4 0], MaxRange=50, ... DetectorOutput="Lanes and objects", ... UpdateInterval=stepSize); radarSensor = drivingRadarDataGenerator(SensorIndex=2,... MountingLocation=[1.8 0 0.2], FieldOfView=[80 5],... AzimuthResolution=1,UpdateRate=1/stepSize); lidarSensor = lidarPointCloudGenerator(SensorIndex=3,UpdateInterval=stepSize);
Add the sensor to the ego vehicle actor in the RoadRunner scenario. Specify the Actor
ID
property for the vehicle.
egoVehicleID = 1; addSensors(sensorSim,{visionSensor,radarSensor,lidarSensor},egoVehicleID);
Simulate RoadRunner Scenario and Visualize Sensor Data
To visualize sensor data at each time-step of the simulation, add an observer to the RoadRunner scenario.
The helperSensorObserver
system object implements the observer behavior. At the first timestep, the system object initializes the bird's-eye-plot for visualization, Then, at each time step, the system object:
Retrieves target poses in the sensor range using the
targetPoses
function.Processes the target poses into detections using the sensor models.
Visualizes detections and ground truth lane boundaries using
birdsEyePlot
.
observer = addObserver(scenarioSim,"VisualizeSensorData","helperSensorObserver");
Start the scenario.
set(scenarioSim,"SimulationCommand","Start");
Helper Functions
helperSetupBEP
function creates a bird's-eye-plot and configures all the plotters for visualization.
helperPlotLaneBoundaries
function plots the lane boundaries on the birds'eye-plot.
helperSensorObserver
system object implements the visualization of sensor data during the RoadRunner scenario simulation.
type("helperSensorObserver.m")
classdef helperSensorObserver < matlab.System properties(Access=private) currSimTime scenarioSimObj sensorSimObj visionSensor radarSensor lidarSensor visionDetPlotter radarDetPlotter pcPlotter lbGTPlotter lbDetPlotter bepAxes end methods % Constructor function obj = helperSensorObserver() end end methods(Access=protected) function interface = getInterfaceImpl(~) import matlab.system.interface.*; interface = ActorInterface; end % Get ScenarioSimulation and SensorSimulation objects, set up Bird's-Eye-Plot function setupImpl(obj) obj.scenarioSimObj = Simulink.ScenarioSimulation.find('ScenarioSimulation','SystemObject',obj); obj.sensorSimObj = obj.scenarioSimObj.get('SensorSimulation'); obj.visionSensor = evalin("base","visionSensor"); obj.radarSensor = evalin("base","radarSensor"); obj.lidarSensor = evalin("base","lidarSensor"); [obj.visionDetPlotter,obj.radarDetPlotter,obj.pcPlotter,obj.lbGTPlotter,obj.lbDetPlotter,obj.bepAxes] = helperSetupBEP(obj.visionSensor,obj.radarSensor); legend(obj.bepAxes,"show") obj.currSimTime = 0; end function releaseImpl(obj) obj.lidarSensor.release; obj.radarSensor.release; obj.visionSensor.release; end function stepImpl(obj) % Get current Simulation Time obj.currSimTime = obj.scenarioSimObj.get("SimulationTime"); % Get ground truth target poses and lane boundaries from the sensor tgtPoses1 = targetPoses(obj.sensorSimObj,1); tgtPoses2 = targetPoses(obj.sensorSimObj,2); gTruthLbs = laneBoundaries(obj.sensorSimObj,1,OutputOption="EgoAdjacentLanes",inHostCoordinate=true); if ~isempty(gTruthLbs) % Get detections from vision and radar sensors [visionDets,numVisionDets,visionDetsValid,lbDets,numLbDets,lbDetsValid] = obj.visionSensor(tgtPoses1,gTruthLbs,obj.currSimTime); [radarDets,numRadarDets,radarDetsValid] = obj.radarSensor(tgtPoses2,obj.currSimTime); % Get point cloud from lidar sensor [ptCloud,ptCloudValid] = obj.lidarSensor(); % Plot ground-truth and detected lane boundaries helperPlotLaneBoundaries(obj.lbGTPlotter,gTruthLbs) % Plot vision and radar detections if visionDetsValid detPos = cellfun(@(d)d.Measurement(1:2),visionDets,UniformOutput=false); detPos = vertcat(zeros(0,2),cell2mat(detPos')'); plotDetection(obj.visionDetPlotter,detPos) end if lbDetsValid plotLaneBoundary(obj.lbDetPlotter,vertcat(lbDets.LaneBoundaries)) end if radarDetsValid detPos = cellfun(@(d)d.Measurement(1:2),radarDets,UniformOutput=false); detPos = vertcat(zeros(0,2),cell2mat(detPos')'); plotDetection(obj.radarDetPlotter,detPos) end % Plot lidar point cloud if ptCloudValid plotPointCloud(obj.pcPlotter,ptCloud); end end end end end