LSTM Projected Layer
Long short-term memory (LSTM) projected layer for recurrent neural network (RNN)
Since R2024b
Libraries:
Deep Learning Toolbox /
Deep Learning Layers /
Sequence Layers
Description
The LSTM Projected Layer block represents a recurrent neural network (RNN)
layer that learns long-term dependencies between time steps in time-series and sequence data
in the CT
format (two dimensions corresponding to channels and time steps,
in that order) by using projected learnable weights.
To compress a deep learning network, you can use projected layers. A projected layer is a type of deep learning layer that enables compression by reducing the number of stored learnable parameters. The layer introduces learnable projector matrices Q, replaces multiplications of the form , where W is a learnable matrix, with the multiplication , and stores Q and instead of storing W. Projecting x into a lower dimensional space using Q typically requires less memory to store the learnable parameters and can have similarly strong prediction accuracy.
Reducing the number of learnable parameters by projecting an LSTM layer rather than reducing the number of hidden units of the LSTM layer maintains the output size of the layer and, in turn, the sizes of the downstream layers, which can result in better prediction accuracy.
The exportNetworkToSimulink
function generates this block to represent an lstmProjectedLayer
object.
Limitations
The Layer parameter does not accept
lstmProjectedLayer
objects that have theHasStateInputs
orHasStateOutputs
properties set to1
(true
).
Ports
Input
Input data. The data must have two dimensions corresponding to channels and time steps, in that order.
Data Types: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
| fixed point
Output
The result of the projected LSTM operation. The output data has two dimensions corresponding to channels and time steps, in that order.
Data Types: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
| fixed point
Parameters
To edit block parameters interactively, use the Property Inspector. From the Simulink® Toolstrip, on the Simulation tab, in the Prepare gallery, select Property Inspector.
Main
Specify the name of a workspace variable that contains an
lstmProjectedLayer
object from a trained network. The LSTM
Projected Layer block configures itself by using the properties of the
object and calculates the block output by using the learnable parameters of the
object.
Programmatic Use
Block Parameter:
Layer |
Type: workspace variable |
Values:
lstmProjectedLayer object |
Default:
'layerObject' |
Data format for the input data. The options use the same
notation as the fmt
argument of the
dlarray
object, except layer blocks do not support the Batch
(B
) dimension and instead assume an observation number of
1
.
Programmatic Use
Block Parameter:
DataFormat |
Type: character vector |
Values:
'CT' |
Default:
'CT' |
Whether to use stateful prediction, specified as a boolean. If
true
, the block maintains the cell state and hidden state between
time steps. If false
, the block performs stateless prediction by
resetting cell states and hidden states to their initial values at the beginning of each
time step. Use stateless prediction for frame-based processing where Simulink step time represents frame period and the network processes multiple
samples at each time step. For more information, see Sample- and Frame-Based Concepts (DSP System Toolbox).
Programmatic Use
Block Parameter:
StatefulPrediction |
Type: character vector |
Values:
'on' | 'off' |
Default:
'on' |
Data Types
If the object that you pass as the value of the Layer parameter
uses the tanh
state activation function or the
sigmoid
gate activation function, then the block uses the
approximation method that you specify to compute the layer output.
Approximation Method | Data Types Supported | When to Use This Method |
---|---|---|
None (default) | Floating-point | You are processing only floating-point data. |
CORDIC
| Floating-point (double and single) and fixed-point with a
Bias value of | You are processing fixed-point data and want to deploy to FPGA hardware. |
Lookup
| Floating-point and fixed-point | You are processing fixed-point data and want to generate C/C++ code. |
For more information about the CORDIC approximation method, see cordictanh
(Fixed-Point Designer).
Programmatic Use
Block Parameter:
ApproximationMethod |
Type: character vector |
Values:
'None' | 'CORDIC' |
'Lookup' |
Default:
'None' |
Lower value of the output range that the software checks.
The software uses the minimum to perform:
Parameter range checking (see Specify Minimum and Maximum Values for Block Parameters (Simulink)) for some blocks.
Simulation range checking (see Specify Signal Ranges (Simulink) and Enable Simulation Range Checking (Simulink)).
Automatic scaling of fixed-point data types.
Optimization of the code that you generate from the model. This optimization can remove algorithmic code and affect the results of some simulation modes such as SIL or external mode. For more information, see Optimize using the specified minimum and maximum values (Embedded Coder).
Tips
Output minimum does not saturate or clip the actual output signal. Use the Saturation (Simulink) block instead.
Dependencies
To enable this parameter, set Output data type to a value
other than Inherit: Inherit via internal rule
.
Programmatic Use
To set the block parameter value programmatically, use
the set_param
(Simulink) function.
Parameter: | OutMin |
Values: | '[]' (default) | scalar in quotes |
Upper value of the output range that the software checks.
The software uses the maximum value to perform:
Parameter range checking (see Specify Minimum and Maximum Values for Block Parameters (Simulink)) for some blocks.
Simulation range checking (see Specify Signal Ranges (Simulink) and Enable Simulation Range Checking (Simulink)).
Automatic scaling of fixed-point data types.
Optimization of the code that you generate from the model. This optimization can remove algorithmic code and affect the results of some simulation modes such as SIL or external mode. For more information, see Optimize using the specified minimum and maximum values (Embedded Coder).
Tips
Output maximum does not saturate or clip the actual output signal. Use the Saturation (Simulink) block instead.
Dependencies
To enable this parameter, set Output data type to a value
other than Inherit: Inherit via internal rule
.
Programmatic Use
To set the block parameter value programmatically, use
the set_param
(Simulink) function.
Parameter: | OutMax |
Values: | '[]' (default) | scalar in quotes |
Choose the data type for the output. The type can be inherited, specified directly, or expressed as a data type object such as Simulink.NumericType
. When you select Inherit: Inherit via internal rule
,
Simulink chooses a data type to balance numerical accuracy, performance, and generated code
size, while taking into account the properties of the embedded target hardware.
Programmatic Use
To set the block parameter value programmatically, use
the set_param
(Simulink) function.
Parameter: | OutDataTypeStr |
Values: | 'Inherit: Inherit via internal
rule' (default) | <data type expression> |
Select this parameter to prevent the fixed-point tools from overriding the Output data type you specify on the block. For more information, see Use Lock Output Data Type Setting (Fixed-Point Designer).
Programmatic Use
To set the block parameter value programmatically, use
the set_param
(Simulink) function.
Parameter: | LockScale |
Values: | 'off' (default) | 'on' |
Specify the rounding mode for fixed-point operations. For more information, see Rounding Modes (Fixed-Point Designer).
Block parameters always round to the nearest representable value. To control the rounding of a block parameter, enter an expression using a MATLAB® rounding function in the mask field.
Programmatic Use
To set the block parameter value programmatically, use
the set_param
(Simulink) function.
Parameter: | RndMeth |
Values: | 'Floor' (default) | 'Ceiling' | 'Convergent' | 'Nearest' | 'Round' | 'Simplest' | 'Zero' |
Specify whether integer overflows saturate or wrap.
on
— Overflows saturate to either the minimum or maximum value that the data type can represent.off
— Overflows wrap to the appropriate value that the data type can represent.
For example, the maximum value that the signed 8-bit integer int8
can
represent is 127. Any block operation result greater than the maximum value causes
overflow of the 8-bit integer.
With this parameter selected, the block output saturates at 127. Similarly, the block output saturates at a minimum output value of –128.
With this parameter cleared, the software interprets the overflow-causing value as
int8
, which can produce an unintended result. For example, a block result of 130 (binary 1000 0010) expressed asint8
is –126.
Tips
Set this parameter to
on
when your model has a possible overflow and you want explicit saturation protection in the generated code.To optimize the efficiency of your generated code, keep the default
off
setting for this parameter. Using the default setting also helps you avoid overspecifying how the block handles out-of-range signals. For more information, see Troubleshoot Signal Range Errors (Simulink).When you select this parameter, saturation applies to every internal operation on the block, not just the output or the result.
In general, the code generation process can detect when overflow is not possible. In this case, the code generator does not produce saturation code.
Programmatic Use
To set the block parameter value programmatically, use
the set_param
(Simulink) function.
Parameter: | SaturateOnIntegerOverflow |
Values: | 'off' (default) | 'on' |
The block casts the value of the InputWeights
property of the
object that you specify with the Layer parameter to this data
type. The type can be inherited, specified directly, or expressed as a data type object such as Simulink.NumericType
.
Programmatic Use
To set the block parameter value programmatically, use
the set_param
(Simulink) function.
Parameter: | InputWeightsDataTypeStr |
Values: | 'Inherit: Inherit via back
propagation' (default) | 'Inherit: Inherit from 'Constant value'' | <data type expression> |
The block casts the value of the RecurrentWeights
property of the
object that you specify with the Layer parameter to this data
type. The type can be inherited, specified directly, or expressed as a data type object such as Simulink.NumericType
.
Programmatic Use
To set the block parameter value programmatically, use
the set_param
(Simulink) function.
Parameter: | RecurrentWeightsDataTypeStr |
Values: | 'Inherit: Inherit via back
propagation' (default) | 'Inherit: Inherit from 'Constant value'' | <data type expression> |
The block casts the value of the Bias
property of the object that
you specify with the Layer parameter to this data type.
The type can be inherited, specified directly, or expressed as a data type object such as Simulink.NumericType
.
Programmatic Use
To set the block parameter value programmatically, use
the set_param
(Simulink) function.
Parameter: | BiasDataTypeStr |
Values: | 'Inherit: Inherit via back
propagation' (default) | 'Inherit: Inherit from 'Constant value'' | <data type expression> |
The block casts the value of the InputProjector
property of
the object that you specify with the Layer parameter to this
data type. The type can be inherited, specified directly, or expressed as a data type object such as Simulink.NumericType
.
For more information, see LSTM Projected Layer.
Programmatic Use
To set the block parameter value programmatically, use
the set_param
(Simulink) function.
Parameter: | InputProjectorWeightsDataTypeStr |
Values: | 'Inherit: Inherit via back
propagation' (default) | 'Inherit: Inherit from 'Constant value'' | <data type expression> |
The block casts the value of the OutputProjector
property of
the object that you specify with the Layer parameter to this
data type. The type can be inherited, specified directly, or expressed as a data type object such as Simulink.NumericType
.
For more information, see LSTM Projected Layer.
Programmatic Use
To set the block parameter value programmatically, use
the set_param
(Simulink) function.
Parameter: | OutputProjectorWeightsDataTypeStr |
Values: | 'Inherit: Inherit via back
propagation' (default) | 'Inherit: Inherit from 'Constant value'' | <data type expression> |
The block casts the value of the CellState
property of the
object that you specify with the Layer parameter to this data
type. The type can be inherited, specified directly, or expressed as a data type object such as Simulink.NumericType
.
This parameter affects only the initial cell state, c0. To cast later cell state values, use the Cell state parameter. For more information, see Long Short-Term Memory Layer
Programmatic Use
To set the block parameter value programmatically, use
the set_param
(Simulink) function.
Parameter: | TODODataTypeStr |
Values: | 'Inherit: Inherit via back
propagation' (default) | 'Inherit: Inherit from 'Constant value'' | <data type expression> |
Choose the data type for the output of the Sum block
ForIteratorSubsystem/LSTMProjectedCore/CellAdd
inside the
LSTM Projected Layer block. The type can be inherited, specified directly, or expressed as a data type object such as Simulink.NumericType
. When you select Inherit: Inherit via internal rule
,
Simulink chooses a data type to balance numerical accuracy, performance, and generated code
size, while taking into account the properties of the embedded target hardware.
For a time step t, the Sum block computes the cell state ct as ct=ft⊙ct-1+it⊙gt, where i, f, and g denote the input gate, forget gate, and cell candidate gate, respectively, and ⊙ denotes the Hadamard product (element-wise multiplication of vectors). For more information, see Long Short-Term Memory Layer.
Programmatic Use
To set the block parameter value programmatically, use
the set_param
(Simulink) function.
Parameter: | CellStateDataTypeStr |
Values: | 'Inherit: Inherit via internal
rule' (default) | 'Inherit: Keep MSB' | 'Inherit: Keep LSB' | 'Inherit: Inherit via back propagation' | 'Inherit: Same as first input' | 'Inherit: Same as accumulator' | <data type expression> |
The block casts the value of the HiddenState
property of the
object that you specify with the Layer parameter to this data
type. The type can be inherited, specified directly, or expressed as a data type object such as Simulink.NumericType
.
This parameter affects only the initial hidden state, h0. To cast later hidden state values, use the Hidden state parameter. For more information, see Long Short-Term Memory Layer
Programmatic Use
To set the block parameter value programmatically, use
the set_param
(Simulink) function.
Parameter: | InitialHiddenStateDataTypeStr |
Values: | 'Inherit: Inherit via back
propagation' (default) | 'Inherit: Inherit from 'Constant value'' | <data type expression> |
Choose the data type for the output of the Product block
ForIteratorSubsystem/LSTMProjectedCore/HiddenStateProduct
inside
the LSTM Projected Layer block. The type can be inherited, specified directly, or expressed as a data type object such as Simulink.NumericType
. When you select Inherit: Inherit via internal rule
,
Simulink chooses a data type to balance numerical accuracy, performance, and generated code
size, while taking into account the properties of the embedded target hardware.
For a time step t, the Product block computes the hidden state ht as ht=ot⊙σc(ct),where o denotes the output gate, σc denotes the state activation function, and ⊙ denotes the Hadamard product (element-wise multiplication of vectors). For more information, see Long Short-Term Memory Layer and LSTM Projected Layer.
Programmatic Use
To set the block parameter value programmatically, use
the set_param
(Simulink) function.
Parameter: | HiddenStateDataTypeStr |
Values: | 'Inherit: Inherit via internal
rule' (default) | 'Inherit: Keep MSB' | 'Inherit: Keep LSB' | 'Inherit: Inherit via back propagation' | 'Inherit: Same as first input' | 'Inherit: Same as accumulator' | <data type expression> |
Choose the data type for the output of the Product block
InputWeightsMatrixMultiply/W*x
inside the LSTM Projected
Layer block. The type can be inherited, specified directly, or expressed as a data type object such as Simulink.NumericType
. When you select Inherit: Inherit via internal rule
,
Simulink chooses a data type to balance numerical accuracy, performance, and generated code
size, while taking into account the properties of the embedded target hardware.
For a time step t, the Product block computes the product of the input weights (W) and the projected input at the time step (xt). For more information, see Long Short-Term Memory Layer and LSTM Projected Layer.
Programmatic Use
To set the block parameter value programmatically, use
the set_param
(Simulink) function.
Parameter: | InputWeightsMatrixMulitplyOutDataTypeStr |
Values: | 'Inherit: Inherit via internal
rule' (default) | 'Inherit: Keep MSB' | 'Inherit: Match scaling' | 'Inherit: Inherit via back propagation' | 'Inherit: Same as first input' | <data type expression> |
Choose the data type for the output of the Product block
ForIteratorSubsystem/LSTMProjectedCore/RecurrentWeightsMatrixMultiply/R*h_t-1
inside the LSTM Projected Layer block. The type can be inherited, specified directly, or expressed as a data type object such as Simulink.NumericType
. When you select Inherit: Inherit via internal rule
,
Simulink chooses a data type to balance numerical accuracy, performance, and generated code
size, while taking into account the properties of the embedded target hardware.
For a time step t, the Product block computes the product of the recurrent weights (R) and the projected hidden state at the previous time step (ht-1). For more information, see Long Short-Term Memory Layer and LSTM Projected Layer.
Programmatic Use
To set the block parameter value programmatically, use
the set_param
(Simulink) function.
Parameter: | RecurrentWeightsMatrixMulitplyOutDataTypeStr |
Values: | 'Inherit: Inherit via internal
rule' (default) | 'Inherit: Keep MSB' | 'Inherit: Match scaling' | 'Inherit: Inherit via back propagation' | 'Inherit: Same as first input' | <data type expression> |
Choose the data type for the output of the Product block
InputWeightsMatrixMultiply/x'*Q_in
inside the LSTM
Projected Layer block. The type can be inherited, specified directly, or expressed as a data type object such as Simulink.NumericType
. When you select Inherit: Inherit via internal rule
,
Simulink chooses a data type to balance numerical accuracy, performance, and generated code
size, while taking into account the properties of the embedded target hardware.
The Product block computes the product of the transposed input (xT) and the input projector weights (Qin). For more information, see LSTM Projected Layer.
Programmatic Use
To set the block parameter value programmatically, use
the set_param
(Simulink) function.
Parameter: | InputProjectorWeightsMatrixMultiplyOutDataTypeStr |
Values: | 'Inherit: Inherit via internal
rule' (default) | 'Inherit: Keep MSB' | 'Inherit: Match scaling' | 'Inherit: Inherit via back propagation' | 'Inherit: Same as first input' | <data type expression> |
Choose the data type for the output of the Product block
ForIteratorSubsystem/LSTMProjectedCore/RecurrentWeightsMatrixMultiply/h_t-1'*Q_out
inside the LSTM Projected Layer block. The type can be inherited, specified directly, or expressed as a data type object such as Simulink.NumericType
. When you select Inherit: Inherit via internal rule
,
Simulink chooses a data type to balance numerical accuracy, performance, and generated code
size, while taking into account the properties of the embedded target hardware.
For a time step t, the Product block computes the product of the transposed previous hidden state (ht-1T) and the output projector weights (Qout). For more information, see LSTM Projected Layer.
Programmatic Use
To set the block parameter value programmatically, use
the set_param
(Simulink) function.
Parameter: | OutputProjectorWeightsMatrixMultiplyOutDataTypeStr |
Values: | 'Inherit: Inherit via internal
rule' (default) | 'Inherit: Keep MSB' | 'Inherit: Match scaling' | 'Inherit: Inherit via back propagation' | 'Inherit: Same as first input' | <data type expression> |
Choose the data type for the accumulator of the Sum block
ForIteratorSubsystem/LSTMProjectedCore/LinearGateAdd/Wx+Rh+b
inside the LSTM Projected Layer block. The type can be inherited, specified directly, or expressed as a data type object such as Simulink.NumericType
. When you select Inherit: Inherit via internal rule
,
Simulink chooses a data type to balance numerical accuracy, performance, and generated code
size, while taking into account the properties of the embedded target hardware.
The Sum block computes the sum WQinTx+RQoutTht+b, where W denotes the input weights, Qin denotes the input projector matrix, x denotes the input, R denotes the recurrent weights, Qout denotes the output projector matrix, ht denotes the hidden state at time step t, and b denotes the bias. For more information, see Long Short-Term Memory Layer.
Programmatic Use
To set the block parameter value programmatically, use
the set_param
(Simulink) function.
Parameter: | LinearGateAccumDataTypeStr |
Values: | 'Inherit: Inherit via internal
rule' (default) | 'Inherit: Same as first input' | <data type expression> |
Choose the data type for the output of the Sum block
ForIteratorSubsystem/LSTMProjectedCore/LinearGateAdd/Wx+Rh+b
inside the LSTM Projected Layer block. The type can be inherited, specified directly, or expressed as a data type object such as Simulink.NumericType
. When you select Inherit: Inherit via internal rule
,
Simulink chooses a data type to balance numerical accuracy, performance, and generated code
size, while taking into account the properties of the embedded target hardware.
The Sum block computes the sum WQinTx+RQoutTht+b, where W denotes the input weights, Qin denotes the input projector matrix, x denotes the input, R denotes the recurrent weights, Qout denotes the output projector matrix, ht denotes the hidden state at time step t, and b denotes the bias. For more information, see Long Short-Term Memory Layer.
Programmatic Use
To set the block parameter value programmatically, use
the set_param
(Simulink) function.
Parameter: | LinearGateAddOutDataTypeStr |
Values: | 'Inherit: Inherit via internal
rule' (default) | 'Inherit: Keep MSB' | 'Inherit: Keep LSB' | 'Inherit: Inherit via back propagation' | 'Inherit: Same as first input' | 'Inherit: Same as accumulator' | <data type expression> |
Choose the data type for the output of the gate activation function. For more information about gate activation functions, see GateActivationFunction. For more information on how an LSTM layer uses activation functions, see Long Short-Term Memory Layer.
The type can be inherited, specified directly, or expressed as a data type object such as Simulink.NumericType
. When you select Inherit: Inherit via internal rule
,
Simulink chooses a data type to balance numerical accuracy, performance, and generated code
size, while taking into account the properties of the embedded target hardware.
Programmatic Use
To set the block parameter value programmatically, use
the set_param
(Simulink) function.
Parameter: | GateActivationoutDataTypeStr |
Values: | Inherit: Inherit via internal rule (default) | Inherit: Same as first input | <data type expression> |
Choose the data type for the output of the state activation function. For more information about state activation functions, see StateActivationFunction. For more information on how an LSTM layer uses activation functions, see Long Short-Term Memory Layer.
The type can be inherited, specified directly, or expressed as a data type object such as Simulink.NumericType
. When you select Inherit: Inherit via internal rule
,
Simulink chooses a data type to balance numerical accuracy, performance, and generated code
size, while taking into account the properties of the embedded target hardware.
Programmatic Use
To set the block parameter value programmatically, use
the set_param
(Simulink) function.
Parameter: | StateActivationOutDataTypeStr |
Values: | 'Inherit: Inherit via internal
rule' (default) | 'Inherit: Same as first input' | <data type expression> |
Choose the data type for the output of the Product blocks
ForIteratorSubsystem/LSTMProjectedCore/f*c_t-1
and
ForIteratorSubsystem/LSTMProjectedCore/i*g
inside the LSTM
Projected Layer block. The type can be inherited, specified directly, or expressed as a data type object such as Simulink.NumericType
. When you select Inherit: Inherit via internal rule
,
Simulink chooses a data type to balance numerical accuracy, performance, and generated code
size, while taking into account the properties of the embedded target hardware.
For a time step t, the Product blocks compute the Hadamard products (element-wise multiplication of vectors, denoted as ⊙) ft⊙ct-1 and it⊙gt, where f denotes the forget gate, c denotes the cell state, i denotes the input gate, and g denotes the cell candidate. For more information, see Long Short-Term Memory Layer.
Programmatic Use
To set the block parameter value programmatically, use
the set_param
(Simulink) function.
Parameter: | CellStateProductOutDataTypeStr |
Values: | 'Inherit: Inherit via internal
rule' (default) | 'Inherit: Keep MSB' | 'Inherit: Inherit via back propagation' | 'Inherit: Same as first input' | <data type expression> |
Choose the data type for the accumulator of the Sum block
ForIteratorSubsystem/LSTMProjectedCore/CellAdd
inside the
LSTM Projected Layer block. The type can be inherited, specified directly, or expressed as a data type object such as Simulink.NumericType
. When you select Inherit: Inherit via internal rule
,
Simulink chooses a data type to balance numerical accuracy, performance, and generated code
size, while taking into account the properties of the embedded target hardware.
For a time step t, the Sum block computes the cell state ct as
ct=ft⊙ct-1+it⊙gt | (1) |
where i, f, and g denote the input gate, forget gate, and cell candidate gate, respectively, and ⊙ denotes the Hadamard product (element-wise multiplication of vectors). For more information, see Long Short-Term Memory Layer.
Programmatic Use
To set the block parameter value programmatically, use
the set_param
(Simulink) function.
Parameter: | CellStateProductOutDataTypeStr |
Values: | 'Inherit: Inherit via internal
rule' (default) | 'Inherit: Same as first input' | <data type expression> |
Execution
Specify the discrete interval between sample time hits or specify another type of sample time, such as continuous (0
) or inherited (-1
). For more options, see Types of Sample Time (Simulink).
By default, the block inherits its sample time based on the context of the block within the model.
Programmatic Use
To set the block parameter value
programmatically, use the set_param
(Simulink) function.
Parameter:
SampleTime |
Data Types:
char |
Values:
'-1' (default) | scalar |
Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.
Version History
Introduced in R2024bStarting in R2025a, the default value for the Layer parameter is 'layerObject'
. In previous versions, the default value is 'layer'
. If you have code that programmatically creates Simulink and relies on variables with the name 'layer'
, update your code so that the variable has the name 'layerObject'
.
New Gate activation output and State activation output parameters control the data types of the gate and state activation outputs.
The default value of Linear gate add output is now
Inherit: Same as first input
.
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: United States.
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)