MATLAB Machine Learning Recipes: A Problem-Solution Approach, 2nd edition

MATLAB Machine Learning Recipes: A Problem-Solution Approach provides a series of examples of technologies critical to machine learning. Each example solves a real-world problem, and all code is executable. Authors Michael Paluszek and Stephanie Thomas show how all of these technologies allow the reader to build sophisticated applications to solve problems with pattern recognition, autonomous driving, expert systems, and much more. The primary audiences for this book are engineers, data scientists, and students.

In addition to MATLAB examples throughout the book, the book is also accompanied by a toolbox created by the authors in MATLAB.


  • How to write code for machine learning, adaptive control, and estimation using MATLAB
  • How these three areas complement each other
  • How these three areas are needed for robust machine learning applications
  • How to use MATLAB graphics and visualization tools for machine learning
  • How to code real-world examples in MATLAB for major applications of machine learning in big data

About This Book

Michael Paluszek, Princeton Satellite Systems
Stephanie Thomas, Princeton Satellite Systems

Apress, 2019

ISBN: 978-1-4842-3915-5
Language: English

Buy Now at

Online Teaching with MATLAB and Simulink

Whether you are transitioning a classroom course to a hybrid model, developing virtual labs, or launching a fully online program, MathWorks can help you foster active learning no matter where it takes place.

MATLAB Courseware

Teaching materials based on MATLAB and Simulink.

Find full courses and labs