image thumbnail

Gradient-based optimizer (GBO)

version 1.0.0 (6.89 KB) by iman ahmadianfar
The GBO, inspired by the gradient-based method, uses two main operators: gradient search rule (GSR) and local escaping operator (LEO).

118 Downloads

Updated 02 Aug 2021

View License

In this study, a novel metaheuristic optimization algorithm, gradient-based optimizer (GBO) is proposed. The GBO, inspired by the gradient-based Newton’s method, uses two main operators: gradient search rule (GSR) and local escaping operator (LEO) and a set of vectors to explore the search space. The GSR employs the gradient-based method to enhance the exploration tendency and accelerate the convergence rate to achieve better positions in the search space. The LEO enables the proposed GBO to escape from local optima. The performance of the new algorithm was evaluated in two phases. 28 mathematical test functions were first used to evaluate various characteristics of the GBO, and then six engineering problems were optimized by the GBO. In the first phase, the GBO was compared with five existing optimization algorithms, indicating that the GBO yielded very promising results due to its enhanced capabilities of exploration, exploitation, convergence, and effective avoidance of local optima. The second phase also demonstrated the superior performance of the GBO in solving complex real-world engineering problems. Source codes of the GBO algorithm are publicly available at http://imanahmadianfar.com/codes/.

Cite As

Ahmadianfar, I., Bozorg-Haddad, O., & Chu, X. (2020). Gradient-based optimizer: A new metaheuristic optimization algorithm. Information Sciences, 540, 131-159.

MATLAB Release Compatibility
Created with R2021a
Compatible with any release
Platform Compatibility
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!