image thumbnail

Initial orbit determination

version 1.0.1 (614 KB) by Meysam Mahooti
Initial orbit determination (two sets of range and angle measurements of a satellite)


Updated 26 Jun 2020

View License

In favorable cases a satellite may allow simultaneous distance and angle measurements yielding directly the satellite's three-dimensional position relative to the ground station. Accounting for the known station location, these measurements can be converted to the position with respect to the center of the Earth. Only two of these position vectors (corresponding to six independent measurements) are then required to determine all six orbital elements in a unique way. The method described in the following comes from Gauss, and provides an efficient and robust way of solving the orbit determination problem for two given position vectors. Further methods like the Lambert-Euler method, the p-iteration and the use of f and g series are discussed in Escobal (1965) and Bate (1971).
Escobal P. R.; Methods ofOrbit Determination; John Wiley & Sons, Inc., New York (1965)_ Reprint: Krieger Publishing Company, Malabar, Florida (1976).
Bate R. R., Mueller D. D., White J. E.; Fundamentals of Astrodynamics; Dover Publieations, Ine., New York (1971).
Montenbruck O., Pfleger T.; Astronomy on the Personal Computer; Springer Verlag, Heidelberg; 4th edition (2000).
Vallado D. A; Fundamentals of Astrodynamics and Applications; McGraw-Hill, New York; 4th edition (2013).

Cite As

Meysam Mahooti (2022). Initial orbit determination (, MATLAB Central File Exchange. Retrieved .

MATLAB Release Compatibility
Created with R2020a
Compatible with any release
Platform Compatibility
Windows macOS Linux
Tags Add Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!