Implement Cross-Validation Using Parallel Computing
Simple Parallel Cross Validation
In this example, use crossval to compute a
cross-validation estimate of mean-squared error for a regression model. Run the
computations in parallel.
mypool = parpool()
Starting parpool using the 'local' profile ... connected to 2 workers.
mypool =
Pool with properties:
AttachedFiles: {0x1 cell}
NumWorkers: 2
IdleTimeout: 30
Cluster: [1x1 parallel.cluster.Local]
RequestQueue: [1x1 parallel.RequestQueue]
SpmdEnabled: 1
opts = statset('UseParallel',true);
load('fisheriris');
y = meas(:,1);
X = [ones(size(y,1),1),meas(:,2:4)];
regf=@(XTRAIN,ytrain,XTEST)(XTEST*regress(ytrain,XTRAIN));
cvMse = crossval('mse',X,y,'Predfun',regf,'Options',opts)
cvMse =
0.1028
This simple example is not a good candidate for parallel computation:
% How long to compute in serial?
tic;cvMse = crossval('mse',X,y,'Predfun',regf);toc
Elapsed time is 0.073438 seconds.
% How long to compute in parallel?
tic;cvMse = crossval('mse',X,y,'Predfun',regf,...
'Options',opts);toc
Elapsed time is 0.289585 seconds.Reproducible Parallel Cross Validation
To run crossval in parallel in a reproducible fashion, set
the options and reset the random stream appropriately (see Running Reproducible Parallel Computations).
mypool = parpool()
Starting parpool using the 'local' profile ... connected to 2 workers.
mypool =
Pool with properties:
AttachedFiles: {0x1 cell}
NumWorkers: 2
IdleTimeout: 30
Cluster: [1x1 parallel.cluster.Local]
RequestQueue: [1x1 parallel.RequestQueue]
SpmdEnabled: 1
s = RandStream('mlfg6331_64');
opts = statset('UseParallel',true,...
'Streams',s,'UseSubstreams',true);
load('fisheriris');
y = meas(:,1);
X = [ones(size(y,1),1),meas(:,2:4)];
regf=@(XTRAIN,ytrain,XTEST)(XTEST*regress(ytrain,XTRAIN));
cvMse = crossval('mse',X,y,'Predfun',regf,'Options',opts)
cvMse =
0.1020Reset the stream:
reset(s)
cvMse = crossval('mse',X,y,'Predfun',regf,'Options',opts)
cvMse =
0.1020