
# Neuroscience Research Software: Tool Development, Collaboration, and Sharing

Vijay Iyer, Paul Kassebaum, and Lisa Kempler

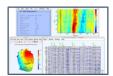
#### Introduction

Neuroscientists depend on shared software tools, specialized for their research. Such software must be developed by domain experts or developers closely linked to the science and the scientific community. Yet growing software projects also need software engineering practices, often unfamiliar to scientific developers, to manage complexity, collaboration, and change. A software authoring platform focused on science, with research-level software engineering capabilities, can promote robust tools and resilient tool communities driven by domain experts.

## **Community Tool Cycle**






# Community Tool Examples — Highlights from File Exchange

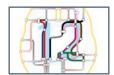
## **Brain Mapping**



#### **BrainStorm**

Open source application for MEG/ EEG data analysis

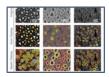



#### **EEGLAB**

Widely used toolbox for processing electrophysiological data

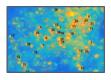


### **FieldTrip**


The MATLAB software toolbox for MEG and EEG analysis



#### **SPM**


Free and open source software for the analysis of brain imaging data sequences

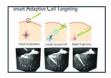




#### AxonSeg

GUI that performs axon and myelin segmentation on histology images

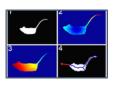



#### Deconvolution...

Source extraction and deconvolution from calcium imaging data

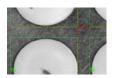


### Kilosort


Automated system for neuronal patch clamp recordings in awake behaving mice



#### smartACT


Adaptive pipette positioning for 2p-targeted experiment

## **Behavior & Psychophysics**



#### **Autotyping Toolbox**

Automated analysis of common behavior tasks in neuroscience



#### gVision

Image acquisition for behavioral neuroscience

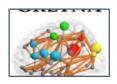


## MonkeyLogic

A toolbox for the design and execution of psychophysical tasks with high temporal precision

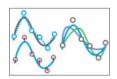


#### **Psychophysics Toolbox**


A toolbox for neuroscience stimulus presentation and response collection

## **Analysis & Theory**




## Chronux

Open-source software package for the analysis of neural data



#### **GRETNA**

A Graph-theoretical Network Analysis Toolkit in MATLAB



### **VBA-toolbox**

Variational Bayesian Analysis (VBA)





#### **DataJoint**

A high-level relational database interface for scientific computing



## Science-focused Platform

## Who are scientific programmers?



## **Scientist Coder**

Practicing scientist who also codes. Switches hats frequently.



#### Research Software Engineer

Staff at research institute/university. Tight feedback loop with scientists (who may or may not code).

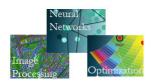


### Scientific Software Service Provider

Company/contractor focused on science applications. Tight feedback loop with scientists (who may or may not code).

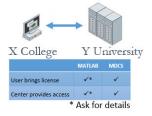
## Platform support for scientific programmers




# Designed for Math and Science

Language designed to look and read like math and science textbooks and online curricula.




# Development by & for Scientists

App design tools, exploratory programming workflows, interactive debugging tools.



#### **Scientific Libraries**

Tested, integrated, and documented libraries for many scientific functions.



## Cluster Resource Sharing

Run scientific code on shared cluster resources for academic uses.

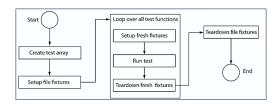


# **Research Software Engineering**

## **Documentation**

Produce a formal interface for other coders via formatted documentation auto-generated from comments in code.

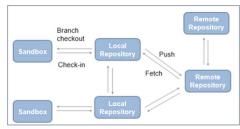



Documentation Generation

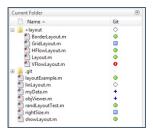
## **Testing Frameworks**

Write, run, and analyze tests. A test runner consists of individual (unit) tests which do not alter state. Qualification functions detect various error types.

| Type                | Action                   |
|---------------------|--------------------------|
| Verify              | Fail & Continue          |
| Assert              | Fail & Halt Current Test |
| <b>Fatal Assert</b> | Fail & Halt Framework    |
| Assume              | Filter Current Test      |



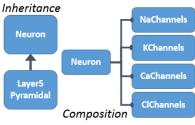




Unit Test Runner

#### **Source Control**

Manage and track code changes by one or more contributors using source control systems, either distributed (e.g. Git™) or centralized (e.g. Subversion®)




Source Control Workflow



Sandbox File Status

## **Modular Programming**

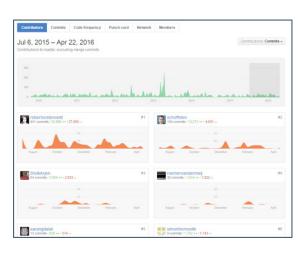
Organize software into modules which can be tested, reused, extended, and combined. Well-designed modules (e.g. OOP classes) promote collaboration & sustainability.



Object-Oriented Programming (OOP)

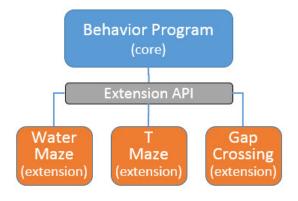


## **Team Programming**


## **GitHub Collaborations**

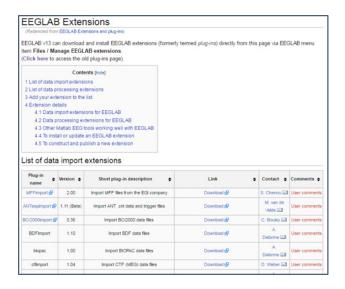
GitHub is a widely-used platform for managing software collaborations. It provides web-based interfaces for Git source control, branch and pull request management, issue tracking, wiki capabilities, and more.




## Case Study — Fieldtrip

Many contributors: >15 in past year, 30 all-time. Collaborate effectively, across labs and borders, using GitHub issues and pull requests.



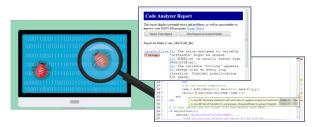

## **Extensible Design**

Code modularity can expand team programming to include loosely coupled outside contributors. Many successful projects employ an "extension" architecture & process to extend the core program's functionality.



## Case Study — EEGLAB

Over 60 extensions are listed, version tracked, and quality checked by project managers.






# **Software Sustainability**



Pair Programming



Code Analysis

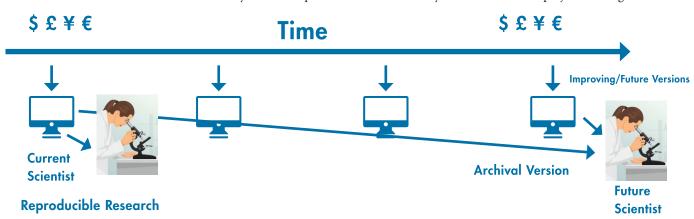
## **Managing Technical Debt**

Addressing internal software quality through code analysis and reviews can ensure long-term development sustainability, as project and team evolves.



Tool Forums




Workshops

### **Resilient Tool Communities**

Software tools can adapt to scientific and personnel change when broad communities of developers, scientific leaders, and users are engaged together.

#### Pathways to Funding

Software tools with sustainable community and development attributes are likely more attractive for project funding.



Questions of scientific reproducibility reveal many meanings and levels. Sustainable software can support archival replication and also encourage me-too studies.

© 2017 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.