Extreme quantum mechanics in MATLAB

Ilya Kuprov, University of Southampton

What is quantum mechanics?

- A mathematical description of reality at small scales
- All that is knowable about a system is contained in one function
- Squared amplitude of that function is probability density

Erwin
Schrödinger

Paul
Dirac

antimatter

What is spin?

- A relativistic symmetry that gives charged particles a magnetic moment
- No classical analogue, mathematically similar to angular momentum
- Responsible for most magnetic properties of matter

Magnetic resonance industry

"By 2020, nuclear magnetic resonance (NMR) spectrometry is likely to lead the spectroscopy market in terms of annual revenue, which is expected to reach approximately $\$ 1.7$ billion worldwide."

Transparency Market Research Report, Aug 2014

"Estimates suggest that the global MRI market was worth about $£ 4.3$ billion in 2010 and is expected to grow to around $£ 6.2$ billion by 2015, equivalent to an annual growth of 7.7% a year."

Oxford Economics Report, Nov 2012

Birds use a spin-selective chemical reaction to sense the direction of the Earth's magnetic field.

DOI: 10.1021/bi060330h

Spin is at the core of every magnetic interaction and every technology that uses magnetism.

DOI: 10.1063/1.2010287

molecular structure

Magnetic resonance simulations

quantum degrees of freedom
$\hat{\rho}$
\hat{H}
matrix of probabilities
matrix of energies
sizeable ($\mathrm{dim}>10^{3}$) and very
sparse complex matrices

equation of motion

$\frac{\partial}{\partial t} \hat{\rho}(t)=-i[\hat{H}(t), \hat{\rho}(t)]$
Liouville - von Neumann equation

> (basically Schrödinger equation for ensembles)
classical degrees of freedom

$\{x, y, z\}$	coordinates
$\{\alpha, \beta, \gamma\}$	orientations
$\{a, \varphi\}$	radio waves

$\left\{\varphi_{1}, \varphi_{2}, \ldots\right\} \quad$ sample spinning

+ conformations, concentrations, etc.

equation of motion

$\frac{\partial}{\partial t} p(\ldots)=-\operatorname{div}[\operatorname{flux}[p(\ldots)]]$
Fokker-Planck equation
(probability balance with a great number of special cases)
spatial derivative operators are turned into matrices using finite difference approximations

Principal problem: sum-of-direct-products-times-a-vector (can just about store the vector).

Polyadic object in MATLAB

A sum of matrix krons acting on a vector:

$(\alpha[\mathbf{A} \otimes \mathbf{B} \otimes \ldots]+\beta[\mathbf{C} \otimes \mathbf{D} \otimes \ldots]+\ldots) \mathbf{x}$

A short sum of krons of small matrices! Times a vector...

$$
\begin{aligned}
& \operatorname{dim}[\mathbf{A}]=1000 \\
& \operatorname{dim}[\mathbf{B}]=1000 \\
& \operatorname{dim}[\mathbf{A}(\mathrm{x}) \mathbf{B}]=10^{6} \\
& \text { numel }(\mathbf{v})=10^{6} \\
& \operatorname{dim}[\mathbf{V}]=1000
\end{aligned}
$$

[^0]```
% Bring forward n-th dimension
dims=1:numel(x_dims); dims(n)=[];
dims=[n,dims]; x=permute(%,dims);
% Unroll other dimensions
=reshape(%),[col_dims(n), numel(x)/col_dims(n)]);
% Run multiplication and update dimension map
x=Q{nmats-n+1}*x; x_dims(n)=row_dims(n);
% Roll other dimensions back up
=reshape(full(x),[row_dims(n),x_dims(dims(2:end))]);
% Put the current dimension back
=ipermute x, dims);
>> A=randn (1000); B=randn(200); C=randn (500);
>> H=polyadic ({{A,B,C}})
H =
 100000000\times100000000 polyadic array with properties:
 cores: {{1\times3 cell}}
 prefix: {}
 suffix: {
>> cheap_norm(H)
ans =
 5.4739e+07
>> tic; (H+H')*rand(1e8,1); toc
Elapsed time is 9.662600 seconds
```


## Polyadic object in MATLAB

Addition is implemented as buffering of terms:

$$
\mathbf{A} \otimes \mathbf{B}+\mathbf{C} \otimes \mathbf{D} \otimes \mathbf{E}+\ldots \quad \Leftrightarrow \quad\{\{\mathbf{A}, \mathbf{B}\},\{\mathbf{C}, \mathbf{D}, \mathbf{E}\}, \ldots\}
$$

The buffer is replayed every time an action on a vector is needed:

$$
(\alpha[\mathbf{A} \otimes \mathbf{B} \otimes \ldots]+\beta[\mathbf{C} \otimes \mathbf{D} \otimes \ldots]+\ldots) \mathbf{x}=\alpha[\mathbf{A} \otimes \mathbf{B} \otimes \ldots] \mathbf{x}+\beta[\mathbf{C} \otimes \mathbf{D} \otimes \ldots] \mathbf{x}+\ldots
$$

The same applies to pre- and post-multiplication:

\[

\]

| Wall clock time, <br> polyadic rep | Wall clock time, <br> explicit rep |
| :---: | :---: |
| $0.37 \pm 0.01 \mathrm{~ms}$ | $0.88 \pm 0.12 \mathrm{~ms}$ |
| $1.8 \pm 0.3 \mathrm{~ms}$ | Out of RAM |
| $97 \pm 14 \mathrm{~ms}$ | Out of RAM |
| $0.21 \pm 0.01 \mathrm{~ms}$ | $0.05 \pm 0.01 \mathrm{~ms}$ |
| $2.1 \pm 0.3 \mathrm{~ms}$ | $11.4 \pm 1.6 \mathrm{~ms}$ |
| $105 \pm 16 \mathrm{~ms}$ | Out of RAM |



## MRI simulation using polyadics

Result: arbitrary spatial dynamics with quantum mechanical description of spin.

A. Allami, M.G. Concilio, P. Lally, I. Kuprov, Science Advances, 2019, 5(7), eeaw8962.

## Spinach toolbox

- Magnetic resonance theory library for large-scale timedomain simulation work
- All types of magnetic resonance (NMR, EPR, MRI, DNP, PHIP, SQUID, etc.)
- Over 600 pages of docs and tutorials, over 100 real-life simulation examples
- Well-annotated open-source code, clear variable names, informative error messages
- Parallel processing, GPU support, tensor structured object support
- Over 50 developers and contributors, 12 years of full-time programming




## Parallelisation strategies

- Some strategies are trivial (parfor over ensembles, etc.)
- SPMD permits more sophisticated techniques


[^1]
## Nested switchable parallelisation

## Extended parfor syntax passes parallelisation opportunities down:

\% Powder averaging loop parfor ( $\mathrm{n}=1$ : numel (weights), nworkers)
\% Localise the parameter array
localpar=parameters;
\% Get the full Hamiltonian at the current orientation H=I+orientation (Q,[alphas(n) betas(n) gammas(n)]); H=(H+H')/2;


Table 1. Scaling behaviour of the parallel propagation algorithms

| Number of CPU <br> cores | Time steps per wall clock second |  |  |
| :---: | :---: | :---: | :---: |
|  | Algorithm A <br> (observable) | Algorithm B1 <br> (final state) | Algorithm B2 <br> (final state) |
| 1 | 1.2 | 3.1 | 1.9 |
| 2 | 2.5 | 6.2 | 3.7 |
| 4 | 4.9 | 12.5 | 7.4 |
| 8 | 9.9 | 25.1 | 14.8 |
| 16 | 18.9 | 49.7 | 29.8 |
| 32 | 29.4 | 72.7 | 48.1 |
| 64 | 48.4 | 112.8 | 78.6 |
| 128 | 68.0 | 151.7 | 110.9 |

## Writing a MATLAB package


H.J. Hogben, M. Krzystyniak, G.T.P. Charnock, P.J. Hore, I. Kuprov, Journal of Magnetic Resonance, 2011, 208(2), 179-194.

## Phosphine ligand chemistry

A di-tert-butylphosphine... 22 spins, meaning matrix dimension $2^{22}$ (very sparse).
Confused chemists - the pattern of NMR peaks is emphatically not textbook.



SPMD across 512 cores: 15 minutes, perfect match to the experiment.
Industrial gold extraction, etc.

## Complex sparse GPU arithmetic



Metal locations in metalloproteins using Tikhonov regularisation:

$$
\text { (least squares gradient) }=[2 \times F F T, 2 \times D G E M M]
$$

Gradient explicit, but Hessian implicit (hello, Optimisation Toolbox):
(Hessian-times-vector) $=[4 \times F F T, 4 \times$ DGEMM $]$

Quadruple 3D FFT of a $512 \times 512 \times 512$ dataset - over 2 GB of data!



## Complex sparse GPU arithmetic



A module for Spinach library:
> run time: minutes
$>$ good match to DEER data
> sensible match to MD data
> new use for old PCS data
> some structural insight


Relevant operations:
> matrix exponentiation
$>$ time propagation
> very large Fourier transforms
> element-wise operations

[^2]
## Molecular distance measurement

Signal modulation by dipolar coupling:



Straightforward theory for two point spin $1 / 2$ particles:

$$
\gamma(r, t) \sim \frac{1}{\sqrt{D t}} \cdot \operatorname{trig}(D t) \cdot \operatorname{fresnel}(\sqrt{D t}) \quad D \sim \frac{1}{r^{3}}
$$

Can extract distance distributions:

$$
\operatorname{DEER}(t)=\int_{0}^{\infty} p(r) \gamma(r, t) d r
$$



## Inverse QM with neural nets

Neural networks are surprisingly good at getting distance distributions:


ensemble statistics


10 hours of unattended training vs. 10 years of programming!

## Philosophical matters...



We managed to find out how a two-layer DEERNet works...


A black box neural network is not compatible with Descartes/Popper framework of science! issues: interpretability and trust


The net spontaneously evolved:

1. A bandpass filter $v s$ the noise
2. A notch filter $v s$ the baseline
3. A frequency axis rectifier from cubic to linear: $\omega \sim 1 / r^{3}$ in DEER, but the plot is linear.

All packed into a single linear (!) transform in one (!!) layer.


## Summary

- Simulations in spin physics are stupidly hard!
- They can be done with some tensor algebra tricks...
- ...but you need a language that understands tensor structures!
- ...which chemists know how to use
- ...that is compatible with version control
- ... and of which there is only one dialect.


## Acknowledgements

## MathWorks



Jake Amey


Liza Suturina


Steven Worswick
Gunnar Jeschke


ПVIDIA. The Leverhulme Trust EHHzürich


Jos Martin


Heiko Weichelt


Ben Tordoff


[^0]:    + various technicalities: sums, products by scalars, etc.

[^1]:    L.J. Edwards, I. Kuprov, Journal of Chemical Physics, 2012, 136(4), 044108.

[^2]:    E.A. Suturina, D. Häussinger, K. Zimmermann, L. Garbuio, M. Yulikov, G. Jeschke, I. Kuprov, Chemical Science, 2017, 8(4), $2751-2757$.

