
Proprietary informationProprietary information

Dr. Lewis Rees – Reaction Engines Ltd.

MATLAB EXPO 2018 – Silverstone, UK

01/10/2018 1

Dynamic Modelling of the SABRE Engine Dynamic Modelling of the SABRE Engine Dynamic Modelling of the SABRE Engine Dynamic Modelling of the SABRE Engine
Using SimscapeUsing SimscapeUsing SimscapeUsing Simscape

Proprietary information

Who Are Reaction EnginesReaction EnginesReaction EnginesReaction Engines?

01/10/2018 2

• British Space Company (150+ employees)

• Based in Abingdon, Oxfordshire

• Founded in 1989

• Developing an advanced combined cycle air-breathing engine

• £60M awarded by UK Space Agency for development of SABRE engine

• Core IP is centred on ultra light weight heat exchangers

Proprietary information

Current Access to Space Using ELVs

The Restrictions

• Cost ($ 56.5 - $400 million per flight)

• Operations (> 3 month preparation)

• Reliability (2-5% loss rate per flight)

01/10/2018 3

1957 Today

The Outcome

• Only about 80 flights/year worldwide

Proprietary information

Reusable Launch Vehicle Option

01/10/2018 4

To do this we need a new class of propulsion:

• Must be able to operate both in the atmosphere
and in space

• Must be efficient at all points during the flight
profile

Proprietary information

SABRE SABRE SABRE SABRE (Synergetic Air-breathing Rocket Engine)

01/10/2018 5

Pre-cooler

Proprietary information

The SABRESABRESABRESABRE Development Programme

01/10/2018 6

Proprietary information

How Far Have We Come?

01/10/2018 7

Proprietary information01/10/2018 8

Why do we need a dynamic model?

• Proof of engine cycle concept

• Testing of operability

• Provide subsystems with limits and
constraints feedback

• Platform for the control system to be
designed around

HEAT HEAT HEAT HEAT

EXCHANGEREXCHANGEREXCHANGEREXCHANGER

AIR

INTAKE

Liquid Hydrogen from tanks

HEAT SINK

COMPRESSOR TURBINE

THERMODYNAMIC CYCLE

LH2

PUMP

AIR-BREATHING CC

ROCKET

CC

Dynamic Modelling of the Engine Cycle?

Proprietary information

Why Do We Use SimscapeSimscapeSimscapeSimscape?

01/10/2018 9

• Flexibility within the MATLAB environment (importing, exporting,
manipulation of data, graphics, etc.)

• Familiarity of Simulink

• Expert local support

• Auto-code generation for controllers

• Plant and controller in the same tool

• Integration with SpeedGoat for hardware-in-loop testing

https://www.speedgoat.com/products-services/real-time-target-machines

Proprietary information01/10/2018 10

Problems:

• Integrating large amounts of data

• Cannot expect a complex model to just simulate, regardless of tool used

• High degree of coupling and multiple modes/states

• Hence, Initialisation is very sensitive to initial conditions

Modelling Complex Systems In Simscape

Proprietary information

Modelling Process Overview

01/10/2018 11

Build

Subsystems
Test BenchBuild

Subsystems
Test Bench Run

Scenarios

Initialise

Model

Construct

Complete

Model

Test Bench
Build

Subsystems

System

Data

Proprietary information

Building Subsystems

• Try to use a built in Simscape domain (i.e. gas, thermal-liquid, etc.)

• Try to build functionality out of existing blocks

• Don’t forget MathWorks have done the work for you

• Don’t be afraid to edit your own blocks, but try to use existing source
code to build off of

01/10/2018 12

Proprietary information01/10/2018 13

The Problem:

• You are now a systems integrator (gulp!)

Dealing with data:

• TRUST NO ONE (assume the data is always wrong)

• Test the data on your test benches

• Define data protocols, structure types etc.

• Automate, Automate, Automate! Will take time, but is worth it

Data

Proprietary information

Time to Drop the GUI!

• Write code to automatically populate blocks

Use set_param(<blk>,<param>,<value>) to set values within blocks

01/10/2018 14

SABRE Dynamic Model contains:

27 ducts

13 valves

10 subsystems

8 boundary conditions

= approx. 850 variables to set

! ! !

Proprietary information

Test Benching of Subsystems

• Test models using typical values and validate against steady state data or
hand calculations, if available

• Test model at extremes

• Test benches should run in the same data and configuration environment
as your main model

• New data will be continually introduced, so a solid test bench is essential

01/10/2018 15

UUT
Controlled

boundary

condition

Controlled

boundary

condition

Proprietary information01/10/2018 16

• Initialization can be very difficult to get to
work. Don’t lose faith – it’s an inherently
hard problem, but solvable

Model Construction

• By now putting the complete model together should be easy.

• Build model up in stages. Don’t just try and put all blocks together and
hope it will work… IT WON’T!

https://www.techdotmatrix.com/2017/11/why-are-most-of-the-

it-engineers-frustrated-in-their-life/

Proprietary information01/10/2018 17

What do we mean by initialisation?
• Solver computing the solution to the first time-step of the simulation

What to do:
• Give the model as much information as possible (steady state data, data from

test benching, etc.)

• Don’t try and start at values of zero, certain equations are likely to not work

• Set priorities where required
Use set_param(<blk>,’<variable>_priority’,<value>)

• Change solver tolerance

Use set_param(… TBC)

• Use initialisation aids

Getting the Model to Initialisation

https://robot.gmc.ulaval.ca/en/research/research-thrusts/mecanismes-paralleles-

entraines-par-cables/3d-foam-printer/

Proprietary information01/10/2018 18

Aim

• Decouple the system

• Allow all components to
settle on operation point

• Switch out aid after a given
time

Example:

Clutching turbomachinery

Initialisation Aids

Proprietary information

Pre-Flight Checks

Check for simple mistakes:

• Compare units in blocks against list of accepted units

Use get_param(<blk>,’<variable>_unit’)

• Compare initial conditions of source blocks to neighbouring blocks

Use get_param(<blk>,’<variable>’) for both blocks and compare

• Check that property blocks are present, e.g. Gas Properties (G)
Use find_system(<mdl>,’classname’,<classname>) or find_system(<mdl>,’masktype’,<blkname>)

01/10/2018 19

Proprietary information01/10/2018 20

The model Initialises. YAY!

What next?

• Don’t re-initialise each time

• Save ‘xout’ states, so that model can be run quickly
Use set_param(<mdl>,’SaveState’,’on’) to save states

Index into xout.values to get the required starting value and return to form the states
structure

Use set_param(<mdl>,’LoadInitialState’,’on’) to load starting state

https://giphy.com/gifs/ussoccer-goal-celebration-3o7bu2D938PkrKrcYw

Running the Model Using Initial States

Proprietary information

Where is Our Dynamic Model Now

• Model initialises

• Now running scenarios, including:
• Throttling up and down throughout the operational range

• Start-up sequence

• Shutdown sequence

• Reporting back to subsystems with time-series data from the model

• Model continues to develop, adding fidelity and testing new data

01/10/2018 21

Proprietary informationProprietary information

Thanks for ListeningThanks for ListeningThanks for ListeningThanks for Listening
01/10/2018 22

Lawrence Pryn

Yashi Kuplish

Oliver Hyde
Piotr Zulawski

Chris Haynes

Reaction

Engines

Chris Lim Rick Hyde

MathWorksSpecial thanks to:

https://www.pinterest.co.uk/pin/57632070206258263/

