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Who Are Reaction EnginesReaction EnginesReaction EnginesReaction Engines?
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• British Space Company (150+ employees)

• Based in Abingdon, Oxfordshire

• Founded in 1989

• Developing an advanced combined cycle air-breathing engine

• £60M awarded by UK Space Agency for development of SABRE engine

• Core IP is centred on ultra light weight heat exchangers
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Current Access to Space Using ELVs

The Restrictions

• Cost ($ 56.5 - $400 million per flight)

• Operations (> 3 month preparation)

• Reliability (2-5% loss rate per flight)
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1957 Today

The Outcome

• Only about 80 flights/year worldwide
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Reusable Launch Vehicle Option
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To do this we need a new class of propulsion:

• Must be able to operate both in the atmosphere 
and in space

• Must be efficient at all points during the flight 
profile
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SABRE SABRE SABRE SABRE (Synergetic Air-breathing Rocket Engine)
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Pre-cooler



Proprietary information

The SABRESABRESABRESABRE Development Programme
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How Far Have We Come?
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Why do we need a dynamic model?

• Proof of engine cycle concept

• Testing of operability

• Provide subsystems with limits and 
constraints feedback

• Platform for the control system to be 
designed around
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Dynamic Modelling of the Engine Cycle?
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Why Do We Use SimscapeSimscapeSimscapeSimscape?
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• Flexibility within the MATLAB environment (importing, exporting, 
manipulation of data, graphics, etc.)

• Familiarity of Simulink

• Expert local support

• Auto-code generation for controllers

• Plant and controller in the same tool

• Integration with SpeedGoat for hardware-in-loop testing

https://www.speedgoat.com/products-services/real-time-target-machines
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Problems:

• Integrating large amounts of data

• Cannot expect a complex model to just simulate, regardless of tool used

• High degree of coupling and multiple modes/states

• Hence, Initialisation is very sensitive to initial conditions

Modelling Complex Systems In Simscape
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Modelling Process Overview
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Building Subsystems

• Try to use a built in Simscape domain (i.e. gas, thermal-liquid, etc.)

• Try to build functionality out of existing blocks

• Don’t forget MathWorks have done the work for you

• Don’t be afraid to edit your own blocks, but try to use existing source 
code to build off of
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The Problem:

• You are now a systems integrator (gulp!)

Dealing with data:

• TRUST NO ONE (assume the data is always wrong)

• Test the data on your test benches

• Define data protocols, structure types etc.

• Automate, Automate, Automate! Will take time, but is worth it

Data
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Time to Drop the GUI!

• Write code to automatically populate blocks

Use set_param(<blk>,<param>,<value>) to set values within blocks
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SABRE Dynamic Model contains:

27 ducts

13 valves

10 subsystems

8 boundary conditions

= approx. 850 variables to set 

! ! !
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Test Benching of Subsystems

• Test models using typical values and validate against steady state data or 
hand calculations, if available

• Test model at extremes

• Test benches should run in the same data and configuration environment 
as your main model

• New data will be continually introduced, so a solid test bench is essential
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• Initialization can be very difficult to get to 
work. Don’t lose faith – it’s an inherently 
hard problem, but solvable 

Model Construction

• By now putting the complete model together should be easy. 

• Build model up in stages. Don’t just try and put all blocks together and 
hope it will work… IT WON’T!

https://www.techdotmatrix.com/2017/11/why-are-most-of-the-

it-engineers-frustrated-in-their-life/
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What do we mean by initialisation?
• Solver computing the solution to the first time-step of the simulation

What to do:
• Give the model as much information as possible (steady state data, data from 

test benching, etc.)

• Don’t try and start at values of zero, certain equations are likely to not work

• Set priorities where required 
Use set_param(<blk>,’<variable>_priority’,<value>)

• Change solver tolerance

Use set_param(… TBC)

• Use initialisation aids

Getting the Model to Initialisation

https://robot.gmc.ulaval.ca/en/research/research-thrusts/mecanismes-paralleles-

entraines-par-cables/3d-foam-printer/
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Aim

• Decouple the system

• Allow all components to 
settle on operation point

• Switch out aid after a given 
time

Example: 

Clutching turbomachinery

Initialisation Aids
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Pre-Flight Checks

Check for simple mistakes:

• Compare units in blocks against list of accepted units

Use get_param(<blk>,’<variable>_unit’)

• Compare initial conditions of source blocks to neighbouring blocks

Use get_param(<blk>,’<variable>’) for both blocks and compare

• Check that property blocks are present, e.g. Gas Properties (G)
Use find_system(<mdl>,’classname’,<classname>) or find_system(<mdl>,’masktype’,<blkname>) 
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The model Initialises. YAY!

What next?

• Don’t re-initialise each time

• Save ‘xout’ states, so that model can be run quickly
Use set_param(<mdl>,’SaveState’,’on’) to save states 

Index into xout.values to get the required starting value and return to form the states 
structure 

Use set_param(<mdl>,’LoadInitialState’,’on’) to load starting state

https://giphy.com/gifs/ussoccer-goal-celebration-3o7bu2D938PkrKrcYw

Running the Model Using Initial States
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Where is Our Dynamic Model Now

• Model initialises

• Now running scenarios, including:
• Throttling up and down throughout the operational range

• Start-up sequence

• Shutdown sequence

• Reporting back to subsystems with time-series data from the model

• Model continues to develop, adding fidelity and testing new data
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Thanks for ListeningThanks for ListeningThanks for ListeningThanks for Listening
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